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Introduction

With the rapid advances in implementation technology, glesis are given
the opportunity of building systems whose complexity faceeds the in-
crease in rate of productivity afforded by traditional desparadigms. De-
sign time has thus become the bottleneck for bringing newumrts to market.
The most challenging designs are in the area of safetyalridémbedded sys-
tems, such as the ones used to control the behavior of trdatpo systems
(e.g., airplanes, cars, and trains) or industrial plante difficulties reside in
accommodating constraints both on functionality and inm@atation. Func-
tionality has to guarantee correct behavior under divaetesof the environ-
ment and potential failures; implementation has to medt s, and power
consumption requirements.

When designing embedded systems of this kind, it is es$¢ntiake all
effects, including the interaction between environmelarpto be controlled)
and design (digital controller), into consideration. Ttadls for methods that
can deal with heterogeneous components exhibiting a yafatifferent be-
haviors. For example, digital controllers can be represkemathematically
as discrete event systems, while plants are mostly repgegséyn continuous
time systems whose behavior is captured by partial or orgiddferential
equations. In addition, the complexity of the plants is stinet representing
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them at the detailed level is often impractical or even insfjds. To cope
with this complexity, abstraction is a very powerful methAéstraction con-
sists in eliminating details that do not affect the behawabthe system that
we may be interested in. In both cases, different mathealagpresentations
have to be mixed to analyze the overall behavior of the ctatreystem.

There are many difficulties in mixing different mathemaltidamains.In
primis, the very meaning of interaction may be challenged. In faben het-
erogeneous systems are interfaced, interface variatdeteéined in different
mathematical domains that may be incompatible. This agpe&es verifi-
cation and synthesis impossible, unless a careful anabjgise interaction
semantics is carried out.

In general, pragmatic solutions precede rigorous appesaththe solu-
tion of engineering problems. This case is no exception.d&oac institu-
tions and private software companies started developingpatational tools
for the simulation, analysis, and implementation of cdngygstems (e.g.,
SIMULINK , STATEFLOW and MATLAB from The Mathworks), by first de-
ploying common sense reasoning and then trying a formadizatf the basic
principles. These approaches focused on a particular ofdssterogeneous
systems: systems featuring the combination of discret¢eteand continuous-
time subsystems. Recently, these systems have been tleetsabjntense
research by the academic community because of the integetsteoretical
problems arising from their design and analysis as well ab@frelevance
in practical applications [2, 95, 136]. These systems allecchybrid sys-
tems[12, 14,17, 18, 19, 20, 33, 82, 101, 134, 135, 137, 141, 164]. 16

Hybrid systems have proven to be powerful design represensafor
system-level design. Whilel8ULINK , STATEFLOW and MATLAB together
provide excellent practical modeling and simulation cagtior the design
capture and the functional verification via simulation oftedded systems,
there is a need for a more rigorous and domain-specific aragswell as
for methods to refine a high-level description into an im@etation. There
is a wealth of tools and languages that have been proposedhevgears to
handle hybrid systems. Each tool or language is based onngoahdifferent
notions of hybrid systems and on assumptions that make adaiparison
difficult. In addition, sharing information among tools ign@st impossible
at this time, so that the community cannot leverage maxjntlaf substantial
amount of work that has been directed to this important topic
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In this paper, we collected data on available languagesdtsm and
tools that have been proposed in the past years for the desidjwerifica-
tion of hybrid systems. We review and compare these toolsigiylighting
their differences in the underlying semantics, expresgoxwer and solution
mechanisms. Table 1 lists tools and languages reviewedsrp#per with
information on the institution that supports the developtad each project
as well as pointers to the corresponding web sied to some relevant pub-
lications.

The tools are covered in two main sections: one dedicateninalation-
centric tools including commercial offerings, one dedichtto formal
verification-centric tools. The simulation-centric to@lse the most popular
among designers as they pose the least number of constoairttse sys-
tems to be analyzed. On the other hand, their semantics@aggeteeral to be
amenable to formal analysis or synthesis. Tools based dricted expres-
siveness of the description languages (see, for exampesyththesizable
subset of RTL languages as a way of allowing tools to operata more
formal way that may yield substantial productivity gains)lthve an appeal
as they may be the ones to provide the competitive edge irstefmuality
of results and cost for obtaining them. The essence is tmbalthe gains in
analysis and synthesis power versus the loss of expressiverp

We organized each section describing a tool in

(1) a brief introduction to present the tool capabilitidss brganiza-
tions supporting it and how to obtain the code;

(2) a section describing the syntax of the language thatitbescthe
system to be analyzed;

(3) asection describing the semantics of the language;

(4) the application of the language and tool to two examlashave
been selected to expose its most interesting features;

(5) adiscussion on its pros and cons.

1George Pappas research group at Univ. of Pennsylvania istaimng a Wikiwikiweb site at
http://wiki.grasp.upenn.edu/ graspdoc/hst/ whose objective is to serve as a community
depository for software tools that have been developed fadaiing, verifying, and designing hybrid
and embedded control systems. It provides an “evolvinghipoi reference for the research community
as well as potential users of all available technology amdaintains updated links to online resources
for most of the tools listed on Table 1.
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Name Institution Web Page References Section
CHARON Univ. of Pennsylvania www.cis.upenn.edu/mobies/charon/ 3,4,8] 3.6
CHECKMATE Carnegie Mellon Univ. www.ece.cmu.edu/  ~“webk/checkmate/ [153] 4.6
d/dt Verimag www-verimag.imag.fr/ ~tdang/Tool-ddt/ddt.html| [56, 21, 22] 4.8
DymoLA Dynasim AB www.dynasim.se/ 69] 3.2
ELLIPSOIDAL TOOLBOX UC Berkeley www.eecs.berkeley.edu/ ~akurzhan/ellipsoids/ [116, 123, 122] 4.7
HSOLVER Max-Planck-Institut www.mpi-inf.mpg.de/ ~ratschan/hsolver/ [149] 4.4
HYSDEL ETH Zurich www.control.ee.ethz.ch/ ~hybrid/hysdel/ [167, 166] 4.9
HYTECH Cornell, UC Berkeley www-cad.eecs.berkeley.edu/ ~tah/HyTech [11, 91, 98] 4.2
HYVisuaL UC Berkeley ptolemy.eecs.berkeley.edu/hyvisual [106] 3.3
Masaccio UC Berkeley www.eecs.berkeley.edu/ ~tah [100] 4.5
MATISSE Univ. of Pennsylvania wiki.grasp.upenn.edu/ ~graspdoc/hst/ [74,75] 4
MODELICA Modelica Association www.modelica.org 73,163, 72] 3.2
PHAVER VERIMAG www.cs.ru.nl/ ~goranf/ [71] 4.3
Scicos INRIA WWW.SCicos.org (66, 144] 34
SHIFT UC Berkeley www.path.berkeley.edu/shift (63, 64] 35
SIMULINK The MathWorks www.mathworks.com/products/simulink [15, 55, 150] 3.1
STATEFLOW The MathWorks www.mathworks.com/products/stateflow [15, 55, 150] 3.1
SYNDEX INRIA www-rocg.inria.fr/syndex [80, 81] 3.4

Table 1.1 References for the various modeling approacbelsets.

In the last part of the paper we provide a comparative sumragtkie
hybrid system tools that we have presented. The resultmistzape appears
rather fragmented. This suggests the need for a unifyingoapp to hybrid
systems design. As a step in this direction, we make the casesemantic-
aware interchange formaflfoday, re-modeling the system in another tool's
modeling language, when (at all) possible, requires sabatamanual ef-
fort and maintaining consistency between models is enong and difficult
in the absence of tool support. The interchange formateaustwould en-
able the use of joint techniques, make a formal comparistmdsan different
approaches possible, and facilitate exporting and impgidiesign represen-
tations. The popularity of MTLAB, SIMULINK , and SATEFLOW implies
that significant effort has already been invested in crgasifarge model-
base in ®MULINK /STATEFLOW. It is desirable that application developers
take advantage of this effort without foregoing the capidd of their own
analysis and synthesis tools. We believe that the futurebeiin automated
semantic translators that, for instance, can interfacé wafitd translate the
SIMULINK /STATEFLOW models into the models of different analysis and
synthesis tools.

Paper organization.In Chapter 2, we lay the foundation for the analysis.
In particular, we review the formal mathematical definitadrhybrid systems
(Section 2.1) and we define two examples (Section 2.2), &sysf three
point masses and a full wave rectifier, which will be used tmpare and ex-
plain the tools and languages presented in this paper. Ipt€ha we intro-
duce and discuss the most relevant tools for simulation asayd of hybrid
and embedded systems. With respect to the industrial nffere present
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the SMULINK /STATEFLOW design environment, the &DELICA language,
and the modeling and simulation toolkRIOLA based on it. Among the aca-
demic tools, we summarize the essential featuresco€8s, SHIFT, HY V-
SUAL and CGHARON, a tool that is the bridge between the simulation tools
and the formal verification tools as it supports both (altifothe verification
component of BARON is not publicly available). In Chapter 4, we focus
on tools for formal verification of hybrid systems. In pauiir, we discuss
HYTECH, PHAVER, HSOLVER, MAsSAccIo, CHECKMATE, d/dt and Hvs-
DEL. The last two can also be used to synthesize a controllergihagrns
the behavior of the system to follow desired patterns. We alsmmarize
briefly tools based on the ellipsoidal calculus likeLEPSOIDAL TOOLBOX.

In Chapter 5 we give a comparative summary of the design appes, lan-
guages, and tools presented throughout this paper. To eGtdpter 6, we
offer a discussion and a plan on the issues surrounding tistroation of the
interchange format.
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Foundations

In this chapter, we discuss a general formal definition ofridybystems as
used in the control community. Most models used in the cosmmunity
can be thought of as special cases of this general model, WMegoresent two
examples, which will be used in the rest of this paper to eteland compare
different tools and languages for hybrid systems.

2.1 Formal Definition of Hybrid Systems

The notion of a hybrid system traditionally used in the contommunity is
a specific composition of discrete and continuous dynanticparticular, a
hybrid system has a continuous evolution and occasiongbguihhe jumps
correspond to the change of state in an automaton thatticarssin response
to external events or to the continuous evolution. A cordirsuevolution is
associated to each state of the automaton by means of ordiiftarential
equations. The structure of the equations and the initiatition may be
different for each state. While this informal descriptia@ems rather simple,
the precise definition of the evolution of the system is qoamplex.

Early work on formal models for hybrid systems incluggsase transi-
tion system$2] and hybrid automatg136]. These somewhat simple models
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were further generalized with the introduction of composlity of parallel
hybrid components ihybrid I/O automatg133] andhybrid moduleg9]. In
the sequel, we follow the classic work of Lygeros et al. [1@2formally de-
scribe a hybrid system as used in the control literature. @lle\e that this
model is sufficiently general to form the basis of our workutufe chapters.

We consider subclasses of continuous dynamical systentsceviain
vector fieldsX, U andV for the continuous state, the input and disturbance,
respectively. For this purpose, we denote withthe class of measurable in-
put functionsu : R — U, and withl{,; the class of measurable disturbance
functionso : R — V. We use the symb@q (X, U, V) to denote the class of
continuous time dynamical systems defined by the equation

wheret € R, z(t) € X and f is a function such that for all € ¢ and for
all § € Uy, the solutionz(t) exists and is unique for a given initial condition.
A hybrid system can then be defined as follows

Definition 1 (Hybrid System). A continuous time hybrid system is a tuple
H=(Q,Up,E,X,U,V,S, Inv, R,G) where:

Q is a set of states;

Up is a set of discrete inputs;

E c Qx Up x Qis aset of discrete transitions;

X, U andV are the continuous state, the input and the disturbance,
respectively;

S : Q — S¢(X,U,V) is a mapping associating to each discrete
state a continuous time dynamical system;

Inv : Q — 2X*xUpxUxV'is a mapping calleéhvariant,

R:E x X xU x V — 2¥ s the reset mapping;

G : E — 2X*UxV is a mapping calledguard

Note that we can similarly defindiscrete timenybrid systems by simply
replacingR with Z for the independent variable, and by considering classes
of discrete dynamical systems underlying each state. Tple tQ, Up, E)
can be viewed as an automaton having stat€s@tputsU p and transitions
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defined byE. This automaton characterizes the structure of the destran-
sitions. Transitions may occur because of a discrete ingentefrom Up,
or because the invariant imv is not satisfied. The mapping provides the
association between the continuous time definition of theadyical system
in terms of differential equations and the discrete behawiterms of states.
The mappingR provides the initial conditions for the dynamical systenomp
entering a state.

The transition and dynamical structure of a hybrid systeterdenes a
set ofexecutionsThese are essentially functions over time for the evatutio
of the continuous state, as the system transitions thrdeglscrete structure.
To highlight the discrete structure, we introduce the cphoéa hybrid time
basis for the temporal evolution of the system, following21

Definition 2 (Hybrid Time Basis). A hybrid time basisr is a finite or an
infinite sequence of intervals

L={teR:t; <t<t}}, j>0

wheret; <t andt; = ;1.

Let7 be the set of all hybrid time bases. An execution of a hybrglesy can
then be defined as follows.

Definition 3 (Hybrid System Execution). An executiony of a hybrid sys-
temH, with initial stateg € Q and initial conditionzy € X, is a collection
x = (¢,x0,7,0,q,u,0,§) wherer € T,0 : 7 — Up,q: 7 — Q,u € U,

0 € Ugand¢ : R x N — X satisfying:

(1) Discrete evolution:
* q(Io) =G

e for all j, €; = (q(Ij),U(Ij+1),q(Ij+1)) e F,
(2) Continuous evolution: the functighsatisfies the conditions

i f(t0,0) = X0,
e for all j and for allt € 1,

§(t,7) = x(t)
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where z(t) is the solution at timet of the dynamical
systemS(q(I;)), with initial conditionz(t;) = £(t5, ),
given the input function: € U and disturbance function
4 e Z/fd;

e forall Js g(tj-i-lvj + 1) €ER (6]75(t97])7u(t;)7v(t;))

e for all j and for allt € [tj,t;.],

(€t 5),0(L;), u(t),v(t) € Inv (q(1;))
* if 7 is afinite sequence of length+ 1, andt; # ¢7, then

(6(t5,4), u(t)), v(t))) € G (¢;)

We say that the behavior of a hybrid system consists of allethexu-
tions that satisfy Definition 3. The constraint on discretel@tion ensures
that the system transitions through the discrete statexrd@diog to its tran-
sition relation E. The constraints on the continuous evolution, on the other
hand, require that the execution satisfies the dynamicatmsyfor each of
the states, and that it satisfies the invariant conditiorieNlwat when the in-
variant condition is about to be violated, the system mus &atransition to
another state where the condition is satisfied. This impliepresence of an
appropriate discrete input. Because a system may not detiita own in-
puts, this definition allows for executions with blockinghlagior. When this
is undesired, the system must be structured appropriaieifaw transitions
under any possible input in order to satisfy the invariant.

Note also that the same input may induce different valid ettecs. This
is possible because two or more trajectories in the statdimamay satisfy
the same constraints. When this is the case, the system -daterministic.
Non-determinism is important when specifying incompleystems, or to
model choice or don't care situations. However, when deswiimplemen-
tations, it is convenient to have a deterministic specificatn this case, one
can establish priorities among the transitions to make thakthe behavior
of the system under a certain input is always well defineduFeato take all
cases of this kind into account is often the cause of the sistancies and
ambiguities in models for hybrid systems.
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Fig. 2.1 The system with three point masses.

Definition 4. A hybrid system execution is said to be (i) trivialif= {Iy}
andty = t;; (i) finite if 7 is a finite sequence; (iii) infinite if is an infinite
sequence an¥ >, t’ —t; = oo; (iv) Zeno, if 7 is infinite but) 22 (¢’ —t; <
Q.

]0] JOJ

In this paper, we are particularly concerned with Zeno beimavand with
simultaneous events and non-determinism, since diffenedlels often differ
in the way these conditions are handled.

2.2 Examples

Comparing tools and languages is always difficult. To make dbmpari-
son more concrete, we selected two examples that are simplegk to be
handled yet complex enough to expose strength and drawbBleisssection
describes in detail the two examples (a system of three poasses and a
full wave rectifier) by using the notation introduced in Sect2.1.

2.2.1 Three-mass system

We consider a system (Figure 2.1) where three point masgesp. andms,
are disposed on a frictionless surface (a table) of lefigtind height:. Mass
m1 has initial velocityv; o while the other two masses are at rest. Mass
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Fig. 2.2 The hybrid system modeling the three point masses.

eventually collides withmsy which, in turn, collides withns. Consequently,
massmg falls from the table and starts bouncing on the ground. Tyssesn
is not easy to model exactly [142], therefore we make somelgiimg as-
sumptions. Each collision is governed by the Newton'’s sulfi rule and the
conservation of momentum. Let; andms be two colliding masses. Let
andv;" denote the velocity before and after the collision, respelgt Then,
Newton’s rule states that| — vy = —e(v; — v2), wheree is called the
coefficient of restitutionwhich describes the loss of kinetic energy due to
the collision. The conservation of momentum is the otheradqn that de-
termines the velocities after the impaet; (v — v1) = ma(vy — v5 ). A
collision betweenn, andmsy happens whem; > x5 andwv; > wvs, in which
case the velocities after collisions are:

— 1
vf:vl(ml €msz) v2m2( + €)
mi + mso mi + mso
1 m mo — em
U;:U(Jrﬁ)l y, (M2 — em)
m1+m2 m1+m2

We assume thaty o < 3.
Different tools provide different features to model hybsggstems and
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Label Guard Reset

Cl2 x> a9 Avxy > vIo VL] = vmf ANV = vx;

C23 x99 > x3 ANvrg > vrg VLo = vm; ANvxrsy = w:gr

F1 z1 > LAy >0Avx; >0 ayr = —g

F2 xo > L Ays>0Avrg >0 ays = —g

F3 3> LAys>0Avrg >0 ays = —g

Bl y1 <0Awvy; <0 VT = V0T A VY1 = —Yy0Y1
B2 y2 <0 A vy <0 VT2 = YpUT2 A VY2 = —Yy VY2
B3 y3 <0Avy3 <0 VI3 = YpUT3 A VY3 = —YyUY3

Table 2.1 Guard conditions and reset maps for the hybrigsysf Figure 2.2

there are many ways of modeling this particular system. Rstiance, each
point mass could be modeled as an independent system tgatrgapilements
the laws of motion. A discrete automaton could be superimgas the three
dynamics to force discrete jumps in the state variables dweltisions and
bounces. A possible hybrid system model is shown in Figzewhere the
position and velocity of each mass are chosen as state hemidlabels'ij
represent guards and reset maps in the case of a collisime&eimass and
massj. LabelsFi represent guards and reset maps when rifadls from the
table. Finally, labels3: represent guards and reset maps when rifassnces
on the ground. The coefficients. and~, model the loss of energy on the
andy directions due to the bounce. We assume that in each statevénant
is the conjunction of the complement of the guards on theututpnsitions
(or, equivalently, that guards have an “as is” semanticaar@ conditions and
reset maps for each transition are listed in Table 2.1.

The system behavior starts with all the masses on the talillecéel-
erations are set to zerg; = h,i = 1,2,3 (all masses on the table top),
x; = %0, = 2,3 andz; = 0. Also, m; is initially moving with veloc-
ity v1,0 > 0 while the other two masses have zero initial velocity. Mass
moves to the right and collides withs (statem; —ms). Massms, after col-
lision, moves to the right and collides withg (statems — mg). Eventually
mg falls off the table (transitiorF'3) and starts bouncing (states — bounce
and transitiong33). We consider both a vertical and horizontal loss of energy
in the bounce as to denote that the surfacg at 0 manifest some friction.
While ms bounces on the ground, the other two masses (depending on the
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Fig. 2.3 A full wave rectifier circuit.

values ofmq, my andmg) can either stop on the table or eventually fall off
and bounce. In each state, the dynamics is captured by a ketaf differ-
ential equations. If we denote the horizontal and verticahgonents of the
velocity and of the acceleration by, ax andvy, ay, then the equations are:
dvz;/dt = ax;, dz;/dt = va;, dvy; /dt = ay;, dy;/dt = vy;.

The three-mass system shows interesting simulation phemanVhen
x30 = L (mass number 3 is positioned at the very edge of the tablede th
events occur at the same timaj collides withms and then both masses
fall (event iteration). Even if events happen simultanégukey are sequen-
tially ordered. This is the main reason for having sevegtestwith the same
dynamics. A hybrid system with only one state would be noemeinistic
and incapable of ordering events in the proper way. Whegrandmg fall at
the same time, they also bounce at the same time, which miagesybrid
automaton non-deterministic since the bouncing eventdearbitrarily or-
dered. Finally, this systems is Zeno because at legswill eventually fall
and it’'s behavior becomes the one of a bouncing ball.

2.2.2 Full wave rectifier

Our second example, shown in Figure 2.3, is a full wave rectifivhich is
used to obtain a constant voltage source starting from aacidal one. Let
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vy, = Asin(27 fot) be the input voltage. The idea behind this circuit is very
simple: whenv;n > 0, diode D, is in forward polarization whileD, is in
reverse polarization; whenn < 0, diode D is in forward polarization while
D1 is in reverse polarization. In both cases the current flowthénload in
the same direction. Diodes are modeled by two states. Infthstate, i.e.
va; — vk; < vy, the current flowing through them is equal+tdy. In the on

va; —vk;

state, i.eva; — vk; > v,, the current is equal thye "7 . The currents in
the two diodes depend ag,;, which depends on the sum of the two currents.
We model the diode as a resistor of valué(2 in forward polarization and
as an independent current source of valug A in backward polarization.
We have two candidates for the load L, is a pure resistor whilé.s is the
parallel connection of a resistor and a capacitor. Whendhd Is the pure
resistor L; we observe the algebraic loap,; — i; — vou. In order to
determinev,,;(t) at timet the values of; () andiy(t) must be known but
they depends on the valug,;(¢) at the very same time. If the load is the
parallel composition of a resistor and a capacitgrthenv,,; is the solution
of a differential equation and the algebraic loop problesagdpear because
the derivative operator acts as a delay in a loop of comlinatioperators.

Figure 2.4 shows the discrete automaton representing hedue recti-
fier system. There are fours states, representing the efiffevorking condi-
tion combinations of the two diodes. In all four cases, thatiooious dynam-
ics for the voltages is described by the following equations

Vin = sin(27ft)
. Vout 11 + 12
Vout = — RO C
V1 = Uin — Vout
V2 = —Uin — Vout

The dynamics for the currents andi, and the invariant conditions for each
state are as follows:

e Oonon: both diodes are on. The continuous dynamics is described
by the additional equations:

il = Ul/Rf
ig = ’L)Q/Rf
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vy <0Awvy >0

v1 >0Avy >0

vy > 0Awvy >0

vy <0Awvy <O

vy <0Avy >0

Fig. 2.4 A full wave rectifier hybrid system model.

and the invariant is; > 0 A v > 0.
e OnOff: dq is on andds is off. The continuous dynamics is described
by the additional equations:

il = ’U1/Rf
i = —I

and the invariant is; > 0 A v9 < 0.
e Offon: do iS On andd; is off. The continuous dynamics is described
by the additional equations:

i o= —Iy
ig = ’L)Q/Rf

and the invariant is; < 0 A vy > 0.
e Offoff: both diodes are off. The continuous dynamics is described
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by the additional equations:

= —I

o = =1

A1

and the invariant is; < 0 A vy < 0.
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Tools for Simulation

Historically, the first computer tool to be used for designoomplex systems
has been simulation. Simulation substitutes extensiwegeafter manufac-
turing and, as such, it can reduce design costs and time..@ecthe degree
of confidence in the correctness of the design is limited @sadicted inter-
actions with the environment go unchecked since the ingetisitoo large to
allow for exhaustive analysis.

The design of hybrid systems is no exception and the most used
and popular tools are indeed simulation based. In this donthere are
strong industrial offerings that are widely used: first amdefmost the
SIMULINK /STATEFLOW toolset that has become tle facto standardn
industry for system design capture and analysis. TieDKELICA language
with the DvmoLA simulation environment is also popular and offers a solid
toolset. Together with these industrial tools, there aeeljr available ad-
vanced tools developed in academia that are getting aitefrom the hybrid
system community. MVISUAL recently developed at U.C. Berkeleygi€0s
developed at INRIA, 8IFT also developed at U.C. Berkeley anéiARON
developed at University of Pennsylvania are reviewed H&raRON is actu-
ally a bridge to the formal verification domain as it offerg ooly simulation
but also formal verification tools based on the same language

17
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Each of the tools under investigation in this chapter isatt@rized by the
language used to capture the design. Whilag.INK /STATEFLOW, MOD-
ELICA and Sicos offer a general formalism to capture hybrid systems
(hence their expressive power is large), the propertiehefsiystems cap-
tured in these languages are difficult to analyze. TN language is
more restrictive but, because of this, offers an easier foatkrification and,
in fact, the same input mechanism is used for the formal eatifin suite.

3.1 Simulink and Stateflow

In this section, we describe the data models 0f B.INK and STATEFLOW.
The information provided below is derived from thev®LINK documenta-
tion as well as by “reverse engineeringiMBILINK /STATEFLOW models.!

SIMULINK and SATEFLOW are two interactive tools that are integrated
within the popular M\TLAB environment for technical computing marketed
by The MathWorks. MTLAB integrates computation, visualization, and pro-
gramming in an easy-to-use environment where problems alotias are
expressed in familiar mathematical notatiomiSLINK is an interactive tool
for modeling and simulating nonlinear dynamical systerhsah work with
linear, nonlinear, continuous-time, discrete-time, indtriable, and multi-
rate systems. BTEFLOW is an interactive design and development tool for
complex control and supervisory logic problemgASFLOW supports vi-
sual modeling and simulation of complex reactive systemsifoyltaneously
using finite state machine (FSM) conceptSAB=CHARTS formalisms [87],
and flow diagram notations. ATETEFLOW model can be included in a
SIMULINK model as a subsystem.

Together with SMULINK and STATEFLOW, MATLAB has become thde
factodesign-capture standard in academia and industry for @camd data-
flow applications that mix continuous and discrete-time dms. The graph-
ical input language together with the simulation and symchmlanipulation
tools create a powerful toolset for system design. The tamsbased on a
particular mathematical formalism, a language, necessayalyze and sim-
ulate the design. Unfortunately, the semantics of the laggus not formally
defined. For this reason, we discuss the aspects of theLB\K / STATE-

1We have also drawn from a technical report by S. Neema [143].
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FLOW semantics as data models. As discussed below, the behdviw de-
sign depends upon the execution of the associated simulatigine and the
engine itself has somewhat ambiguous execution rules.

3.1.1 SIMULINK / STATEFLOW Syntax

Both SMULINK and SATEFLOW are graphical languagesiLINK graph-

ical syntax is very intuitive (and this is also the reason g language is

so popular). A system inIBULINK is described as a collection blocksthat
compute the value of their outputs as a function of their ispBlocks com-
municate through connectors that are attached to fpais A subsystem
can be defined as the interconnection of primitive blocksfatloer subsys-
tems, and by specifying its primary input and output portac®defined,
subsystems can be used to specify other subsystems in achiegh fash-
ion. SMULINK has arich library of primitive components that can be used to
describe a system. The library is composed of six fundarhbluek sets:

e Continuous: blocks for processing continuous signals such as the
Derivative andintegrator blocks; more complex continuous time op-
erators, likestate-Space blocks that can be used to model dynami-
cal systems described by state equati@asi-Pole blocks that can
be used to describe transfer functions in grdomain.

e Discrete: blocks for processing discrete signals; most of these are
descriptions of transfer functions in thedomain;Discrete Zero-
Pole, Discrete State-Space, and Discrete-Time Integrator are exam-
ples of blocks that can be instantiated and parameterizeal
SIMULINK model. Discrete blocks have $ample Timgarame-
ter that specified the rate of a periodic execution. Thispalso
includesunit Time and zero-Order Hold, which are important “in-
terface blocks” in modeling multi-rate systems withMBLINK .
Specifically aunit Delay blocks must be inserted when moving
from a slow-rate to a fast-rate block andeo-Order Hold is nec-
essary in the other case [47, 128].

e Math Operations: general library of blocks representing mathemat-
ical operations likesum, Dot Product, andAbs (absolute value).

e Sinks: signal consumers that can be used to display and store the
results of the computation or to define the boundaries of igae h

n
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archy. There are several types of display blocks for run inagh
generation. It is possible to store simulation results in&rMB
workspace variable for post-processing. Output ports peeial
type of Sinks.

e Sources: various signal generators that can be used as stimuli for
test-benches; input ports are a special typsonfces.

e Discontinuities: non-linear transformations of signals suchsasi-
ration andQuantizers; the Hit Crossing block is very useful for mod-
eling hybrid systems: this block haglaesholdparameter and it
generates an output event when the threshold is hit.

The SMULINK syntax supports the definition of subsystems that can be
instantiated in a MULINK model allowing designers to use hierarchy in the
organization of their designs. ATSTEFLOW model can be instantiated as a
block within a SMULINK model. The syntax of ®\TEFLOW is similar to that
of STATECHARTS. A STATEFLOW model is a set of states connected by arcs.
A state is represented by a rounded rectangle. A state cagfibed into a
STATEFLOW diagram, thus creating a hierarchical state machineTArS
FLOw model can have data input/output ports as well as event/oygput
ports. Both data and events can be defined as local totheEBLOW model
or external, i.e. coming from thellBULINK parent model in which case, data
and events are communicated throuhg ports.

Each arc, or transition, has a label with the following synta

event[condition]{ condition_action }/transition_action
Transitions can join states directly, or can be joined togetisingconnec-
tive junctionsto make composite transitions that simulite then ... else and
loop constructs. Each segment of a composite transitioallisccatransition
segmentA transition is “attempted” whenever its event is enabled the
condition is true. In that case, the condition action is eked. If the transi-
tion connects directly to a destination state, then comtrphssed back to the
source state that executes its exit action (see below),thieetransition exe-
cutes its transition action, and finally the state changesgitace by making
the destination state active. On the other hand, if theittan®nds at a con-
nective junction, the system checks if any of the outgoiaggition segments
is enabled, and further attempts to reach a destinatioa. stato path tho-
rugh the transition segments can be found to reach a déstirstate, then the
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source state remains active and no state change takes lateg.however,
that, in the process, some of the condition actions mighe lheen executed.
This is essential to simulate the behavior of certain caritow constructs
over the transitions, and at the same time distinguish waighaictions to be
taken upon a state change.

A state has a label with the following syntax:

name/

entry:entry action

during:during action

exit:exit action

on event_name:on event_name action
The identifiername denotes the name of the state; #hey action is executed
upon entering the state; thiaring action is executed whenever the model is
evaluated and the state cannot be left; ékieaction is executed when the
state is left; finally, theevent_name action is executed each time the specified
event is enabled.

3.1.2 SIMULINK / STATEFLOW Semantics

The SIMULINK Data Model. SIMULINK is a simulation environment that
supports the analysis of mixed discrete-time and contisdimoe models.
Different simulation techniques are used according to fhdretontinuous
blocks and/or discrete blocks are present. We discuss balgase in which
both components are present.

A SIMULINK project is stored in an ASCII text file in a specific for-
mat referred to as Model File Format in thev®LINK documentation. The
SIMULINK project files are suffixed with “.mdl” and therefore we may oc-
casionally refer to a MULINK project file as an “mdl file”. There is a clear
decoupling between theiguLINK and the SATEFLOwW models. When a
SIMULINK project contains S8ATEFLOW models, the $SATEFLOW models are
stored in a separate section in the mdl file. We presearS-Low models
separately in the next section. The data models presentedchpture only
the information that is being exposed byw®LINK in the mdl file. Note that
a substantial amount of semantics information that is siomestrequired for

2|n order to avoid any ambiguity, a complete model of a systerSiMuLINK will be referred to as a
“SIMULINK project”.
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the effective understanding of theN&LINK models is hidden in the k-
LAB simulation engine, or in theiBULINK primitive library database.

The SMULINK simulation engine deals with the components of the de-
sign by using the continuous-time semantic domain as a iagifdgomain
whenever both continuous and discrete-time componenisrasent. In fact,
discrete-time signals are just piecewise-constant cootig-time signals. In
particular, the inputs of discrete block is sampled at rmplds of itsSample
Timeparameter while its outputs are piecewise-constant sgnal

The simulation engine includes a set of integration alporg, called
solvers which are based on the AtLAB ordinary differential equation
(ODE) suite. A sophisticated ODE solver uses a variable-8tep algorithm
that adaptively selects a time-step tuned to the smallegt tionstant of the
system (i.e., its fastest mode). The algorithm allows foorsrin estimating
the correct time-step and it back-tracks whenever the &timt error exceeds
a bound given by the user. All signals of the system must bliated at the
time-step dictated by the integration algorithm even if merd is present at
these times. A number of multi-rate integration algorithnas’e been pro-
posed for ODEs to improve the efficiency of the simulatorsthay have a
serious overhead that may make them even slower than thiear@pnser-
vative algorithm. MATLAB provides a set of solvers that the user can choose
from to handle either stiff (e.gQDE15Ss) or non-stiff (e.g.ODE23) problems.

The most difficult part for a mixed-mode simulator that hasléal with
discrete-events as well as continuous-time dynamics igiag the interac-
tion between the two domains. In fact, the evolution of theticmous-time
dynamics may trigger a discrete event at a time that is nokreopriori. The
trigger may be controlled by the value of a continuous véeian which case
detecting when the variable assumes a particular valuegeeat importance
as the time at which the value is crossed is essential to hewgect simula-
tion. This time is often difficult to obtain accurately. Inrpeular, simulation
engines have to use a sort of bisection algorithm to bradleetitne value of
interest. Numerical noise can cause serious accuracygmablSMULINK
has a predefined block calleéro-crossinghat forces the simulator to accu-
rately detect the time when a particular variable assunezdlp value.

In SIMULINK , there is the option of using fixed time-step integration
methods. The control part of the simulator simplifies coasadly, but there
are a few problems that may arise. If the systestii§ i.e., there are substan-
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tially different time constants, the integration method & use a time step
that, for stability reasons, is determined by the fastesiend his yields an
obvious inefficiency when the fast modes die out and the behafithe sys-
tem is determined only by the slower modes. In additiona gmiori knowl-
edge of the time constants is needed to select the appepina step. Fi-
nally, not being able to control the time step may cause thelsition to be
inaccurate in estimating the time at which a jump occurs,venamiss the
jump altogether!

The computations of the value of the variables are schedadedrding
to the time step. Whenever there is a static dependency awaoiadples at a
time step, a set of simultaneous algebraic equations musilbed. Newton-
like algorithms are used to compute the solution of the sefirofiltaneous
equations. When the design is an aggregation of subsysteensybsystems
may be connected in ways that result in ambiguity in the cdatfmn. For
example, consider a subsystetrwith two outputs: one to subsystefand
one to subsyster@. SubsystenB has an output that feeds In this case, we
may evaluate the output 6f whenever we have computed one of its inputs.
Assuming thatA has been processed, then we have the choice of evaluating
the outputs ofB or of C. Depending on the choice of processiBgor C,
the outputs ot may have different values! Simultaneous events may yield a
nondeterministic behavior. In fact, both cases are in lacorrect behav-
iors unless we load the presence of connections among blatkgausality
semantics. In this cas®, hasto be processed befoé Like many other sim-
ulators, SMULINK deals with nondeterminism with scheduling choices that
cannot be but arbitrary unless a careful (and often timeeresipe) causal-
ity analysis is carried out. Even when a causality analysevailable, there
are cases where the nondeterminism cannot be avoided siggetiinsic in
the model. In this case, scheduling has to be somewhatamsbitf the user
knows what scheme is used and has some control on it, he/shaduopt the
scheduling algorithm that better reflects what he/she hasnd. However, if
the choice of the processing order is dam&idethe simulator according, for
example, to a lexicographical order, changing the namesofdiiables (or of
the subsystems) may change the behavior of the system Bésdle the inner
workings of the simulation engines are often not documenteeéxpected
results and inconsistencies may occur. This phenomenorelisknown in
hardware design when Hardware Description Languages (Haresused to
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represent a design at the register-transfer level (RTL)eaRdL simulator is
used to analyze the system. For example, two different Riflulsitors may
give two different results even if the representation ofdlksign is identical,
or if it differs solely on the names of the subsystems and emtHer in which
the subsystems are entered.

The STATEFLOW Data Model. STATEFLOW models the behavior of dy-
namical systems based on finite state machines. TiagEsLOW model-
ing formalism is derived from SX\TECHARTS developed by Harel [87]. The
essential differences fromT&TECHARTS are in the action language. The
STATEFLOW action language has been extended primarily to referense M
LAB functions, and MTLAB workspace variables. Moreover, the concept of
condition action has been added to the transition expnessio

The interaction betweeni8ULINK and STATEFLOW occurs at the event
and data boundaries. The simulation of a system consisfirfgMuULINK
and SATEFLOw models is carried out by alternatively releasing the cdntro
of the execution to the two simulation engines embeddedarivio tools. In
the hardware literature, this mechanism is referred woasimulation Since
control changes from one engine to the other, there is amesdrthat may be
quite significant when events are exchanged frequently. [femnative sim-
ulation mechanism would consist of a unified engine. Thisyéwer, would
require a substantial overhaul of the tools and of the upihgylsemantic
models.

3.1.3 Examples

A moving point mass can be modeled iMBLINK as the subsystem shown
in Figure 3.1. The two accelerations: anday are integrated to obtain the
two velocitiesvx andwvy, which are integrated to obtain the positianandy.
The subsystem has a reset input that forces the integratdues lbaded with
the initial conditionsvzg, vyg, o, yo provided externally. In order to avoid
algebraic loops through thet®SrerLow model, outputs are taken from the
integrators’ state ports which represent the outputs ofrtegrators at the
previous time stamp. The system discussed in Section 2ah. be modeled
by instantiating and coordinating three of the point madssgstems. The
entire system is shown in Figure 3.2. T@kartblock is a SATEFLOW model
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Fig. 3.1 Model of single moving mass inNBULINK /STATEFLOW.

describing the discrete automaton that is shown in Figue 3Ve assume
mi1 = mo = ms. The SATEFLOW chart is a hierarchical state machine.
There are four states:

e allon in which all point masses are on the table. The entry state is
mimoving in which onlym; is moving to the right. The first mass
that falls off the table isn; because masses are not allowed to
make vertical jumps. In this state two events can take plage:
collides withms or mo collides withms.

e m3off INn whichms has fallen. Transition to this state sets the verti-
cal acceleratiomys to —9.81m/s? but does not reset the integra-
tors’ states. In this state either; collides withms or ms3 touches
the ground.

e m23off in which msy has also fallen. Transition to this state sets
the vertical acceleratiomy, to —9.81m/s? but does not reset the
integrators’ states. In this state eitheg touches the ground or
mo does.
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Fig. 3.2 Model of the three point masses iMBLINK /STATEFLOW.

e alloff in which m; has fallen too. In this state any mass can touch
the ground.

The simulation result is shown in Figure 3.4. Wesgf = L—0.5, 230 = L,
€e=0.9,L="7andh = 3.

The simulation result highlights how discrete and contusigtates are
updated. There is one integration step between the time w&hgunard be-
comes enabled and the time when a transition is taken. Tlg dedue to
the fact that when a reset of the integrators is needed)ISNK blocks are
executed for at least one integration step before passagdhtrol back to
the STATEFLOW chart. Things are different for the change in the values of
the vertical accelerations. This change requires no regktransitions can
be taken in the 8ATEFLOW model in zero time. The time shift due to the
reset of velocity propagates to the bounces of the two mdkag®ccurs at
two different times, as shown in the enlarged inset on theofeFigure 3.4.



3.1. Simulink and Stateflow 27

threemassesparameterized/Chart

allon X1 >= X2 && vx > 19,972 + vx2*(1+0.9)/2 1+0.9)/2 + vx2*(1-0.9)2

m3off
(mimoving| mitm2 (m3bounce
7 [y3<=0}/reset3vy30=-0.9°vy3:vx30=0. 93

IXL>=x2 8 vxt > 1-poyz + Pz ; (1+0.9)2 + W2*(1-0.9)/2
(R >=x3 88 w2 > (1-0[0)12 + @ (1+0.9) 2 (140.9)12 + Vx3(1-0.9)12

[y3<=0)/reset3:{y30=-0.9°Vy3vx30=0.9°vx3

X1 >= k2 && w1 > x2JfigsetLiresel2vx10=

maim3

1-0.9)12 + vx2*(140.9)2:vx20=Vx1{(1+0.9)/2 + vx2{(1-0.9)

X3 >= 7 && vx3 > lay3="

mitmz

[x2>= 7 8& vi2 > 0Jay2=-9.81

3<=0)/resetqvy30=-0.9°vy3,vx30=0.9"x3

‘m2bounce
[y2<=0resd2,vy20=-0.9"vy2;vx20=0.9"vx2

[y3<=0}/reset3;vy30=-0.9'vy3:vx30=0.9'x3

=09x3

=0.9e2

[y1<=0Jreset1;vy10=-0.9y1vx10=0.9°vxL [x>= 7)iay1=—9.81

[y1<=QresetLivy10=-0.9°vy1;vx10=0.9°vxT [y1<=0Jreset1;vy10=-0.9'vy1;yx10=0.9°vx1

o /

Printed 02-Aug-2005 22:23:08

Fig. 3.3 Model of the three point masses automata MUBINK / STATEFLOW.

Another simulation artifact is shown in the in second ingeha right of Fig-
ure 3.4 at the end of the simulation. There, we see that massesdms
fall below the floor. This is because transitions are alwaterieaved with the
integration step, and one of two events that occur simuttasig may there-
fore be lost. In this case, the system reacts to the boundingassms, by
taking the corresponding transition in stateff shown in Figure 3.3. Subse-
quently, control is passed to the continuous time subsystdnch performs
an integration step. Recall that an event is enabled wheevéilaation of the
condition changes from false to true. During the integrattbe vertical posi-
tion of massesn; andms remains negative, thus disabling the corresponding
event. Hence, the event, which was enabled at the previepsistlost. This
problem could be resolved by a more elaborate discrete ntiogiefakes into
account the possibility of simultaneous events.

The Full Wave Rectifier Example. Figure 3.5 illustrates a IBULINK
model of the full wave rectifier system presented in Secti@2 The bottom
part of the figure shows a linearized model of a diode. 3Wéchblock has
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Fig. 3.4 Simulation result for the three-mass system.

three inputs: the middle pin controls which of the two otheguts is routed
to the output. If the value of the control input is greatemtlzaro, the output
is proportional to the input voltage by a constant that regnés the forward
resistance. If the control input is less than zero then theeotis equal to the
reverse bias current. The sum of the currents in the two disdequal to the
current through the load which is modeled as a linear dynalrsicstem.

The simulation results are shown in Figure 3.6, where thescofunc-
tionality of the model can be validated. When the load is stutsd with a
simple constant (that models a pure resistive loadyUSINK reports an er-
ror due to an algebraic loop. There are two possible solstioithis problem.
The easiest one is to add a delay in the loop (right beforetef Hfe constant)
so that the algebraic loop is eliminated. This solution isalwvays possible
especially when adding a delay changes the stability ptiegesf a feedback
system. The other solution is to use Algebraic Constrainblock that can
be found in theMath OperationsSIMULINK library. This block has an input
called f(z) and an output called. The simulator computessuch thatf(z)
is equal to zero (for index 1 differential algebraic systems
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Fig. 3.5 Simulink model of the full-wave rectifier in Simukn

3.1.4 Discussion

The MATLAB toolbox with SMULINK and STATEFLOW provides excellent
modeling and simulation capabilities for control and didd&+ applications
mixing continuous- and discrete-time domainsM@LINK interfaces very
well with the MATLAB environment allowing the use of powerful visualiza-
tion functions for plotting graphs and, more generally,tfer post-elaboration
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Fig. 3.6 Simulation results of the rectifier model.

of simulation results. Thel®BULINK library is very rich making the language
very expressive. The expressiveness is even enhanced Ippskibility of
calling MATLAB functions and compiled C code.

However, often there is a need to subject the models (develop
SIMULINK ) to a more complex, rigorous, and domain-specific analysis.
fact, we have seen in Section 3.1.2 that the behavior of thiesyis sensitive
to the inner working of the simulation engines. Conseqyefilly under-
standing what takes place inside the tools would be impbttaprevent un-
pleasant surprises. On the other hand, in most cases users itpese details
and may end up with an erroneous result without realizingdteed, the lack
of formal semantics of the models used inside this very ssfaktool set has
been considered a serious drawback in academic cit¢lass motivating an
intense activity in formalizing the semantics of hybridteyss and a flurry of

3Some authors dispute the fact thati¥®LINK has no semantics” by arguing instead tha@LINK
has a multitude semantics (depending on user-configurgibiens) which, however, are informally and
sometimes partially documented [48].
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activities aimed at providing translation to and frommBLINK /STATEFLOW.

A strong need has been expressedaiitomatic semantic translatothat
can interface with and translate thev®LINK /STATEFLOW models into the
models of different analysis and synthesis tools. In [48fat al. discuss a
method for translating a discrete-time subset iofl8.INK models into lus-
TRE programs? The proposed method consists of three steps (type inference
clock inference, and hierarchical bottom-up translat@mdl has been imple-
mented in a prototype tool called S2L.

3.2 Modelica

MODELICA is an object-oriented language for hierarchical physicatiet

ing [72, 163] targeting efficient simulation. One of its mwsportant features

is non-causal modelingn this modeling paradigm, users do not specify the
relationship between input and output signals directlytémms of a func-
tion), but rather they define variables and the equatiortighiest must satisfy.
MODELICA provides a formal type system for this modeling effort. Teoe
mercial modeling and simulation environments foOMELICA are currently
available: DrmoLA [69] (Dynamic Modeling Laboratory) marketed by Dy-
nasim AB and M\THMODELICA, a simulation environment integrated into
Mathematica and Microsoft Visio, marketed by MathCore Begring.

3.2.1 MODELICA Syntax

The syntax of the MDELICA language is described in [25]. Readers familiar
with object-oriented programming will find some similaggiwith Ava and
C++. However, there are also fundamental differences diho®ELICA is
oriented to mathematical programming. This section dessrthe syntactic
statements of the language and gives some intuition on heyvdin be used
in the context of hybrid systems. This, of course, is not afgete reference
but only a selection of the basic constructs of the languagesamplete ref-
erence can be found in [25]. The book by Tiller [163] is anadtrction to
the language and provides also the necessary backgrouraetod MoD-
ELICA models for various physical systems.

4While doing so, they also attempt to formalize the typing iming mechanisms of such discrete-time
subset of SMULINK .
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MODELICA is a typed language. It provides some primitive types like
teger, String, Boolean andReal. As in C++ and Java, it is possible to build more
complicated data types by defining classes. There are mpeg tf classes:
records, types, connectors, models, blocks, packagesuantidns. Classes,
as well as models, have fields (variables they act on) andadsthin MoD-
ELICA, class methods are representeckyation andalgorithms sections. An
equation is syntactically defined asxpression = expression> and arequation
section may contain a set of equations. The syntax suppatshility to de-
scribe a model as a set of equations on variables (non-ceng#gling), as
opposed to a method of computing output values by operatinigput values.

In non-causal modeling there is no distinction betweentiapa output vari-
ables; instead, variables are involved in equations that imel satisfied. The
Algorithm sections are simply sequential blocks of statements and@ser to
JavA or C++ programming from a syntactic and semantic viewpoivtsD-
ELICA also allows the users to specify causal models by defifuingtions
A function is a special class that can have inputs, outpund,aamalgorithm
section which specifies the model behavior.

Before going into the details of variable declaration, iirigortant to
introduce the notion ofariability of variables. A variable can be continuous-
time, discrete-time, a parameter or a constant dependitigeomodifier used
in its instantiation. The MDELICA variability modifiers areliscrete, parame-
ter andconstant (if no modifier is specified then the variable is assumed to be
continuous). The meaning is self-explanatory; the forreahantics is given
in Section 3.2.2.

MODELICA also defines @&onnect operator that takes two variable ref-
erences as parameters. Connections are like other eguatiofact, con-
nect Statements are translated into particular equations tivatvie the re-
quired variables. Variables must be of the same type (e@thetinuous-time
or discrete-time). Theonnect statement is a convenient shortcut for the users
who could write their own set of equations to relate varialileat are “con-
nected”.

MODELICA is a typed system. Users of the language can extend the pre-
defined type set by defining new, and more complex, types. The®-

5C++ or AvA programmers are used to this terminology, where method&iactions that are part of a
class definition.
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ICA syntax supports the following classés:

e record: it is just an aggregation of types without any method def-
inition. In particular, no equations are allowed in the débn or
in any of its components, and they may not be used in conmectio
Arecord is a heterogeneous set of typed fields.

e type: it may only be an extension to the predefined types, records,
or array of type. It is like aypedef in C++.

e connector. it is a special type for variables that are involved in a
connection equation. Connectors are specifically usednoemi
models. No equations are allowed in their definition or in afly
their components.

e model it describes the behavior of a physical system by means of
equations. It may not be used in connections.

e block: it describes an input-output relation. It has fixed catgali
Each component of an interface must either have causalitgl eq
to input or output. It can not be used in connections.

e package it may only contain declarations of classes and con-
stants.

e function: it has the same restrictions as for blocks. Additional re-
strictions are: no equations, at most afgrithm section. Calling
a function requires either aigorithm section or an external func-
tion interface which is a way of invoking a function descdlia
a different language (for instance C). A function can nottaon
calls to the MODELICA built-in operatorsder, initial, terminal, sam-
ple, pre, edge, change, reinit, delay, andcardinality whose meaning is
explained in Section 3.2.2.

Inheritance is allowed through the keywasdends like in JAVA . A class can
extend another class thereby inheriting its parent clafsfiequations, and
algorithms. A class can be definedmastial, i.e. it cannot be instantiated di-
rectly but it has to be extended first. TheoMELICA language provides con-
trol statements and loops. There are two basic controlrstates § andwhen)
and two loop statementsgiile andfor).

6Some of the constructs mentioned below are explained indpeg2.2
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if expressiorthen
equation/algorithm
else
equation/algorithm
end if
For instance, an expression can check the values of a consnvariable.
Depending on the result of the Boolean expression, a diffeset of equations
is chosen. It is not possible to mix equations and algorithingne branch
has a model described by equations, so has to have the otrarhbrAlso
the number of equations has to match. The syntax ofdingtatement is as
follows:

for IDENT in expressiorioop
{ equation/algorithm}
end for

IDENT is a valid MoDELICA identifier. Afor loop can be used to generate
a vector of equations, for instance. It is not possible to eguations and
algorithms. Thevnile statement syntax is as follows:

while expressiorioop

{ equation/algorithm}

end while
A while loop has the same meaning as in many programming &gegi The
body of the while statement is active as long as the expressialuates to
true. Finally, thewhen statement has the form:

when expressiorthen
{ equation/algorithm}
end when

when expressiorthen
{ equation/algorithm}
else whenexpressiorthen
{ equation/algorithm}
end when
The body of a when statement is active when the expressiomgelarom
false to true. Real variables assigned whan clause must be discrete time.
Also, equations in ahen clause must be of the form= expression, where
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v is a variable. Expressions use relation operatorsdike-, ==, ... on con-
tinuous time variables, but can be any other valid exprassioose result is
a Boolean.

3.2.2 MODELICA Semantics

The MoDELICA language distinguishes between discrete-time and
continuous-time variables. Continuous-time variables #re only ones
that can have a non-zero derivative OMELICA has a predefined operator
der(v) that indicates the time derivative of the continuous vdeab When

v is a discrete time variable (specified by using th&rete modifier at
instantiation time) the derivative operator should not lsedueven if we
can informally say that its derivative is always zero andngjes only at
event instantgsee below). Parameter and constant variables remainacanst
during transient analysis.

The second distinction to point out is between dlyerithm and theequa-
tion sections. Both are used to describe the behavior of a modelgdation
section contains a set of equations that must be satisfiathtibgs are all
concurrent and the order in which they are written is immakeFurther-
more, an equation does not distinguish between input anglibuariables.
For instance, an equation could Q€¢t) + i2(f) = 0 which does not specify
if 41 is used to computé or vice-versa. The value of andis, at a specific
time ¢y, is set in such a way that all the equations of the model arsfisalt
An algorithm section is a block of sequential statements. Here, ordetersat
In analgorithm section, the user should use the assignment opetatwstead
of the equality operatot. Only one variable reference can be used as left
operand. The value of the variable to the left of the assigrroperator is
computed using the values of the variables to the right of it.

Causal models in MDELICA are described using functions. A function
is a particular class that has input and output variablesingtfon has exactly
onealgorithm section that specifies the input/output behavior of thetionc
Non-causal models are described by meansqo#tion sections defined in
classes or models. Statements likgen else andfor are quite intuitive. In the
case ofif clauses irequation sections, if the switching condition contains also
variables that are not constants or parameters theaishéranch cannot be
omitted, otherwise the behavior will not be defined when sefaxpression
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is evaluated.

The when clause deserves particular attention. When the switchiag e
pression (see Section 3.2.1) evaluates to true the bodyeefrdn clause is
active. The switching expression is considered a disc¢heie-predicate. If
the body of the when clause is not active, all the variableggasd in the
body should be held constant to their values at the last énstant. Hence,
if the when clause is in arquation section, each equality operator must have
only one component instance on the left-hand side (otherivis not clear
which variable should be held). Such component instanceei®he whose
value is held while the switching expression evaluateslgefda his condition
can be checked by a syntax checker.

Finally, aconnect statement is an alternative way of expressing certain
equations. Aonnect statement can generate two kinds of equations depending
on the nature of the variables that are passed as argumenie first case,
the variablesvy, ..., v, are declaredlows at instantiation time (using the
flow modifier) and the connection generates the equatjof ... + v, = 0.
Otherwise, the connection generates the equatjosa ... = v,. Note that the
term “flow” here should not be confused with the same term usédicate
a continuous evolution as opposed to a discrete jump (SgeSection 3.5).

Equivalent Mathematical Description of aMODELICA Program. A pro-
gram written in the MODELICA language can be interpreted by defining a
one-to-one mapping between the program and a system ofr@iffal Al-
gebraic Equations (DAE). The first step is to translate aanigrical MoD-
ELICA model into a flat set of MDELICA statements, consisting of the set
of equation andalgorithm sections of all the used components. The resulting
system of equations looks like the following:

c:= fo(rel(v)) (3.1)
m = fm(v,c) (3.2)
0:= fulv.0) (3.3)
wherev := [z;x;y;t;m; pre(m); p]. Here,p is the set of parameters and

constant variablesy is the set of discrete event variablgse¢(m) is the value
of discrete events variables immediately before the ctieeent occurreds:
andy are continuous variablesel(v) is the set of relations on variablesiin
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andc is the set of expressions ifnstatements (including expressions coming
from the conversion ofvhen statements inta). The variabless andy are
distinguished becausevariables appear differentiated whijevariables do
not. A DAE solver will iterate in the following way:

e Equation 3.3 is solved by assumingandm constants, meaning
that the system of equations is a continuous system of conis
variables;

e during integration of Equation 3.3, the conditions in EquaB.1
are monitored. If a condition changes its status, an evetnigis
gered at that specific time and the integration is halted.

e at the event instant, Equation 3.2 is a mixed set of algeleqia-
tions which is solved for the Real, Boolean and Integer unkrs)

e after the event is processed, the integration is restaridoBgua-
tion 3.3.

3.2.3 Examples

We first describe the full wave rectifier example, which shalaes useful-
ness of object orientation and non-causal modeling. Thiablas are cur-
rents through and voltages across each component, whose dye defined
as follows:

type Voltage = Real;

type Current = Real,
Each component in a circuit has pins to connect to other coemis. A pin is
characterized by a voltage (with respect to a referencagejtand an input
current. A pin is defined as follows:

connectorPin
\oltage v;
flow Current i;
end Pin;
The connector keyword is used to specify that pins are used in connection
statements. Theow keyword is used to declare that the variabie a flow,
i.e. the sum of allCurrent fields of Pins in a connection must be equal
to zero. A generic two-pin component can be described in tflewing
way [73]:
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partial class TwoPin
Pin p, n;
\oltage v;
Current i;
equation
V=p.V-Nny;
O=p.i+ni
i=p.i
end TwoPin;
This class defines a positive and a negative pin. Kirchotjisa¢ions for volt-
age and current are declared in #hgation section. This class is partial and
we extend it to specify two pins components like resistois @pacitors. A
capacitor for instance can be described as follows:

classCapacitor
extendsTwoPin;
parameter Real C(unit="F") "Capacitance”;
equation
C *der(v) =1;
end Capacitor;
In theequation section, we need only declare the component constituest equ
tion since the other equations are inherited from a two-gimgonent. A
parameter is used for the value of capacitance. A diode iefadds a com-
ponent with two regions of operation: reverse biasifer 0 and forward bias
forv > 0:
classDiode
extendsTwoPin;
equation
if v>0theni=v/0.1;
elsei = -1e-15;
end if;
end Diode;
In the forward-bias region, the diode is a resistor with g/wenall resistance
while in reverse bias it is basically an open circuit (onlynael reverse cur-
rent flows through it). Each component can be instantiatedraarconnected
with others to build a netlist as in the following example:
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classcircuit
Resistor R1(R = 10); Capacitor C1(C = 0.01);
Vsin DCp(VA = 5); Vsin DCn(VA = 5);
Diode d1; Diode d2;
Ground G;
equation
connec{ DCp.p, d1.p )connec{ dl.n,R1l.p);
connec{( d1.n, Cl.p)connec({ DCp.n, G.gpin);
connec{ DCn.p, G.gpin )connec( DCn.n, d2.p);
connec( d2.n, R1.p)connec( Cl.n, G.gpin);
connec( R1.n, G.gpin);
end circulit;

whereVsin is the sinusoidal voltage source aGdound is a component
that is used to fix the voltage of a nodelid. Figure 3.7 shows the simulation
result for the two different types of load. The waveforms evebtained by
simulating the MODELICA models with DrMOLA . DYMOLA is able to solve
the algebraic loop by performing a symbolic manipulation.

Fig. 3.7 Dymola simulation results of the Modelica rectifee@mple: (a) for an RC load and (b) for a
pure resistive load

The Three-Mass Example. A moving mass is a MDELICA class that de-
fines a mass moving in a bi-dimensional space with verticél tzorizontal
accelerations equal tor anday respectively.

classMovingMass
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parameter Realx0, y0, vx0, vy0, ax0, ayo;
Realx, y, vx, vy, ax, ay;
equation
der(x) =vx; der(vx) =ax; der(y) =vy; der(vy) = ay;
algorithm
wheninitial( ) then
reinit ( x, X0 ); reinit ( 'y, y0 ); reinit ( vx, vx0 );
reinit ( vy, vy0 ); reinit ( ax, ax0 );reinit ( ay, ay0 );
end when
end MovingMass;

The equations are self-explicative. When the simulatiantstthe call toni-

tial() generates an event that executesvthen clause. Theeinit statements
set each variable to its initial value that is passed as petemlhe system

of three masses is a ®DELICA class that instantiates three moving masses
and defines guards conditions and resets maps. The modeddsleel as
follows:

classThreeMasses
parameter Real m1 "Mass1”, m2 "Mass2”, m3 "Mass3”;
parameter Real h "Height”, L "Lenght”, e "Restitution”;
MovingMass mass1(x0=0.0,y0=h,vx0=3.0,vy0=0.0,ax0=8/0=0.0);
MovingMass mass2(x0=6.5,y0=h,vx0=0.0,vy0=0.0,ax0=3.0=0.0);
MovingMass mass3(x0=7.0,y0=h,vx0=0.0,vy0=0.0,ax0=3.0=0.0);
equation
if ((massl.x>=L)and (massl.vx- 0))then
massl.ay =-9.81; massl.ax = 0.0;
else
massl.ay = 0.0; massl.ax = 0.0;
end if;
if ((mass2.x>=L) and (mass2.vx- 0))then
mass2.ay = -9.81; mass2.ax = 0.0;
else
mass2.ay = 0.0; mass2.ax = 0.0;
end if;
if ((mass3.x>=L) and (mass3.vx- 0))then
mass3.ay = -9.81; mass3.ax = 0.0;
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else
mass3.ay = 0.0; mass3.ax = 0.0;
end if;
when ( (massl.y<=0) and (massl.vy 0) ) then
reinit (mass1.vx,e*pre(massl.vxginit (massl.vy,-
e*pre(massl.vy));
end when
when ( (mass2.y<= 0) and (mass2.vy 0) ) then
reinit (mass2.vx,e*pre(mass2.vxginit (mass2.vy,-
e*pre(mass2.vy));
end when
when ( (mass3.y<= 0) and (mass3.vy 0) ) then
reinit (mass3.vx,e*pre(mass3.vxginit (mass3.vy,-
e*pre(mass3.vy));
end when
algorithm
when ( (massl.x>=mass2.x) and ( massl.w= mass2.vx) then
reinit(massl1.vx, pre(massl.vx) * (ml - e * m2) / (ml + m2) +
pre(mass2.vx) *m2 * (1 + e) / (m1l + m2));
reinit (mass2.vx, pre(massl.vx) * (L + e) * ml/ (ml + m2) +
pre(mass2.vx) * (m2 - e *ml)/ (m1l + m2));
elsewhen( (mass2.x>=mass3.x) and ( mass2.w= mass3.vx) jhen
reinit (mass2.vx, pre(mass2.vx) * (m2 - e * m3) / (m2 + m3) +
pre(mass3.vx) *m3 * (1 + e) / (m2 + m3));
reinit (mass3.vx, pre(mass2.vx) * (L + e) * m2 / (m2 + m3) +
pre(mass3.vx) * (m3 - e *m2) / (m2 + m3));
end when
end ThreeMasses;
classThreeMassSystem
ThreeMasses tms(m1=1.0,m2=1.0,m3=1.0,h=3,L=7,e=0.9),
end ThreeMassSystem;
The code shows two sections: asigation and onealgorithm. The semantics is
very different in the two cases: statements iragarithm section are sequen-
tial while equations are constraints that must be satistiedurrently. Thef
statements define regions where the masses are subjectitalvaccelera-
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tion. Note that, in order to have the same number of equaiiaiependently
of whether the condition holds or not, @rstatement in an equation section
must always have an else branch. A set of when statements ¢ake of re-
setting the vertical velocity when a mass hits the groune Gitaler in which
velocities are re-initialized after they hit the groundrematerial.

We describe the collisions in tha&gorithm section. Thewhen-elsewhen
statement imposes a priority between the collisiomaf with ms and the
collision of my with ms. In particular, ifze o = 3 then the two colli-
sions have the same time stamp and when the algorithm seaisn only
the first branch of thevhen statement is executed while the second event is
basically lost. The ®PMoLA compiler warns the user that some variables
are re-initialized in different parts of the source code chhcould lead to
non-deterministic behaviors unless the events that amvied in the re-
initialization are mutually exclusive.

—— tms.mass1x tms.mass2.x

tms.massd.x

tms.massldy —— tms.mass2y —¥— tms.massly
23

—

Py B /

e
A
,/
e =
20 /
A
P,
-
//

16 # .4 87

| 1

!

i /

i

; i
124 /’ 3
A -
Pl /
’ 7 A
4 ]

3 Jf / 1

Fig. 3.8 Modelica simulation result for three-mass systeam®le.
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Figure 3.8 shows the simulation result. The collisionmaf andms and
the falling events are exactly located at the same pointe s it can be
deduced by the fact that the two masses bounce together aathe time
(see the larger inset at the left of Figure 3.8). Two effeais loe noted. First,
the simulation is non-Zeno. This is becaus®MELICA always introduces
a delay when executing a transition. Second, the bouncifig &aentually
fall below the floor, as indicated in the inset at the right @jufe 3.8 at the
end of the simulation. This artifact, that we have alreadgnga SMULINK
in Section 3.1.3, is again due to the simulation strategywéier, unlike
SIMULINK , the bouncing event in this case is not lost due to the simeilty
of two events. Instead, the ball bounces, but the followirtggration step is
too large, in fact large enough that the ball at the nextti@mahas already
reached its highest point and fallen again below the floclle¥ecause the
sign of the vertical position and of the vertical velocityn&n negative be-
tween the two integration steps, a new bouncing event is elémgted, and
the ball keeps falling below the floor level.

3.2.4 Discussion

MODELICA is an object-oriented language for mathematical progrargmi
Object orientation is well understood in the software comityuand is cer-
tainly a well accepted programming paradigm. The languagesiiy clean.
There are important features that make building models. d&sst of all,
non-causal modeling allows designers to write model eqoatdirectly into
the language syntax without any change. Designers do nettoaexplicitly
define dependent and independent variables. This savesttwipl effort of
solving equations or making different models depending bitlvquantities
are computed and which are used to compute others.

Object orientation helps write reusable models. Inhecgamakes it pos-
sible to define a basic set of equations that are common to rahamgmi-
cal systems and then specialize a model depending on thapphtation.
In modeling a physical system, it is often important to digtiish quanti-
ties as‘through” and“across”. MODELICA provides a special keyword to
declare their type. Then, connections are automaticadigstated into the
correct equation (zero-sum or equality) according to tipe yf variables in-
volved. MODELICA doesn’'t specify the semantics of algebraic loops. This
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is left to the particular simulation tool, which could simpkject a program
that contains them. For instance, a simple system z cannot be simu-
lated in DrMOLA, which reports a cyclic dependency onpwhile the system
22 + x = 2? 4+ x can be simulated and gives the result= 0.0. This is

because the first is treated symbolically with algebraic imaations, while
the second, which is more complex, is solved using numetéciiniques.

All these features make a &ELICA model very compact. Modeling
hybrid systems in MDELICA, however, is not a trivial task. Guard condi-
tions and reset maps can be specifiedgumtion sections oelgorithm sections
and they have very different meanings. When described iatemusections,
events cannot be sequentially scheduled becaldsehen are not allowed.
When described in algorithm sections, simultaneous eeniisl be lost.

When such languages are used to describe hybrid systemdistrete
state at time is usually not explicit but it is represented by the sequesfce
events that happened until Continuous state and events are defined by a
set of non-causal equations that model the physical syStaese two pecu-
liarities of the MoDELICA modeling paradigm make debugging less intuitive
than other tools like MV ISUAL where states and transitions are explicit and
where models are causal.

3.3 HyVisual

The Hybrid System Visual Modeler (HV1SUAL) is a block-diagram edi-
tor and simulator for continuous-time dynamical systemd aybrid sys-
tems [106]. ¥ VISUAL is built on top of FoOLEMY [68, 131], a framework
that supports the construction of domain specific tools, eeml be freely
downloaded fromnttp://ptolemy.eecs.berkeley.edu.

3.3.1 HYVISUAL Syntax

Like any ProLEMY model, a v VISuAL model is specified graphically start-
ing from a set of library actors. An actor is a block with typsatts and pa-
rameters. Output ports can be connected to input ports bypsreaelations.
Types are organized in a partial order, where> ¢, if a variable of typet;
can be converted intg, without loss of information. The type of an output
port must be greater than or equal to the type of the inputipsrtonnected
to. While the actor library is rich enough to model most pradtsystems,
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users have the option to build new actors and redefine refat®composite
actor encapsulates a subsystem as an interconnection of otloes,abiereby
representing a level of the hierarchy. Hierarchy can alsexipeessed in terms

of amodal modelwhich represents an actor that has modes of operation. A
modal model is captured as a finite state machine that candwmfisd by
drawing bubbles (states) and connecting them through @acss(tions). Each
bubble can be refined into a continuous time system repiageantlynamical
system or into another finite state machine.

A hybrid system can be described inMiSuAL as follows. A modal
model is instantiated and its ports are configured. The fgisée machine
that describes its mode of operations is represented aph.dtach state has
a name and each transition is characterized by the follogl@gents:

guard expression: a Boolean expression involving inputs and outputs of the
modal model as well as state variables;

output actions: an assignment of values to the output ports;

set actions: an assignment of values to the state variables;

reset: a Boolean value (either zero or one);

preemptive: a Boolean value (either zero or one);

non-deterministic: a Boolean value (either zero or one).

Each state can be refined into a dynamical system or into endith
nite state machine. The user describes a dynamical systeusiby actors
from the built-in libraries. These include actors for startt computation
(like addition, multiplication, etc.), as well as actors nwdel continuous
dynamics (thedynamicslibrary) like Integrator, LaplaceTransferFunction, Lin-
earStateSpace, DifferentialSystem. When a modal model is created, its ports are
propagated to the state machine diagram and to all its reéintmn

A HYVIsuAL model is saved in XML format. The XML file is a text file
describing the actors used in the model, their ports andhpetex configura-
tion, and their graphical properties (shape and position).

3.3.2 HYVISUAL Semantics

A complete and clear explanation of therMISUAL semantics is given
in [129]. Here we briefly summarize the main concepts.
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In HYVISUAL, acontinuously evolving signé a function
z: TxXN—->V

whereT C R is a connected subset representing the time bhes the set
of non-negative integers representing an index within & tsamp, and” is
the set of values that the signal can take on. For a fixed tjritee value of

a signal depends on the index, which is used to model sinedizevents.
In order to avoid chattering Zeno conditions, it is requitieat 3m € N such
thatVn > m, z(t,n) = z(¢t,m). If the system is non-chattering Zeno, then
the leastm satisfying the condition above is called tfigal index The value
x(t,m) is called thefinal valueof x at¢ and the value(t,0) is called the
initial value at timet. Accordingly, thenitial value functionz; : 7' — V and
and thefinal value functionc; : 7" — V' are defined as

VteT, x;(t)=x(t,0) and xzs(t) =x(t,m)

wherem is the final index. This representation is useful to exprasstions
that are piecewise continuous, that is functions that anérmeous except for
a discrete subset of the timeline. A signal piecewise continuous$

(1) the initial value functiore; is left continuous;

(2) the final value function: ; is right continuous;

(3) x has only one value at alle 7'\ D, whereD is a discrete subset
of T.

The solution to the dynamical system

#(t) = g(x(t),1),  x(to) = w0 (3.4)

can then be expressed as a piecewise continuous signalcarhise further
discretized by lettingD C T be a discrete set that includes the times at
which signals have more than one value d?d superset that includ€s. A
discrete traceof the hybrid system is the set

{z(t,n)|t € D' An € N} (3.5)

To be a valid trace, it is required that, for each intervaireen times inD’,
Equation 3.4 have a unique and continuous solution, andltleag¢ndpoints
of the solution in the interval be in the trace.

To obtain a discrete trace one can proceed as follows.
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Init: t* = ¢, .I'(t*, 0) = Xy,

Discrete phase: execute the model until;(¢*) is computed,;

Continuous phase: computet; such thatg is continuous and locally Lip-
schitz on[t*,¢;). Solve Equation 3.4 on the interviat, ¢;) with ini-
tial conditionzy = x(t¥);

Iterate: Sett* = ¢, and iterate from the discrete phase witft*, 0) equal
to the value ofr att; computed in the previous step.

Two issues remain open: how to compttend how to execute the model to
computex ¢ (t*). The first issue reduces to a proper selection of the step size
while the second reduces to the definition of the discretsgpsamantics.

To determine the step size YN ISUAL implements both event detection
as well as backtracking. In particular, backtracking is lenpented by pro-
viding each actor with two functions:

g @ VIxTx¥X¥—X (3.7)

wheren is the number of input portsn the number of output ports/; is

the set of all possible values (including the absence of masigwhich is
fundamental for representing discrete signalsis the time line and is the
state space of an actor. The functipis the output function anglis the state
update function. In MVISUAL, each actor can reject the current step size
decided by the simulator, in which case a new step size mu¢dided. The
simulator calls the state update function only after albexthave accepted
the current step size.

The second issue is how to computg(t*). HYVISUAL has a fixed point
semantics to compute the values of signals and state. Fat@nlat the input
bex : TxN — V}', the output be : T'x N — V" and the state be given by
the functiono : T'x N — 3. Attimet¢ € T, execution proceeds as follows:

y(t,0) = [f(z(t,0),t,0(t0))
o(t,1) = g(x(t,0),t,0(t,0))
y(t,1) = flz(t,1),t,0(t1))
o(t,2) = g(x(t,1),t,0(t 1))
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Fig. 3.9 HrVisuAL model of the three-mass system.

When (and if) all actors in the model have reached a point evtfegir state
no longer changes, then the final values have been reachalll smnals and
the execution at timeis complete.

3.3.3 Examples

The HyVIsuAL model of the three-mass system is shown in Figure 3.9. Each
state of the state machine is refined into a continuous tirstesythat de-
scribes the dynamics of a point mass moving with a constarela@tion.
The accelerations are integrated to obtain the velocitiestae velocities are
integrated to obtain the positions. Both horizontal andiv&lr positions are
used to generate threshold events: the horizontal positos monitored to
check when a point mass falls off the table and the verticsitjoo is moni-
tored to check when a point mass hits the ground.

The initial state is nameahit. From the initial state, the model makes a
spontaneous transition to a state whergstarts moving with initial velocity
v1p. The state machines implements the one in Figure 2.2.

The simulation results are shown in Figure 3.10 where alldéhmasses
eventually bounce on the ground. In this simulatibn= 7, z29 = 6.5,
x30 = 7 andvy o = 3 while y; = 3 for all three masses. When, touches
ms, HYVISUAL correctly simulates the collision and the falling events of
mo andms that occur at the same time, but with different indices. When
mo andms touch the ground, multiple output transitions are enablethf
statemsbounce and the simulator reports an error saying that there are mul-
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Fig. 3.10 HrVIsuAL simulation result for the three-mass system withy = 4.95, 30 = 4.98, L =5
andh = 7.

tiple transitions enabled but not all of them are marked deterministic.
In the lastest version of YWVISUAL, each transition has, in fact, a flagn-
deterministic that can be marked in situations where multiple transitmmsd
be enabled at the same time. After this small change has beade to the
model, the simulation can be successfully completed. Aetittof the simu-
lation, as shown in Figure 3.10, the three balls fall belog/fthor level. This
effect is again due to the choice of the duration of the iragn step, as
already explained for MDELICA in Section 3.2.3.

The Full Wave Rectifier Example. The HyVIsuAL model of the full wave
rectifier is shown in Figure 3.11. A diode is modeled as a liybystem with
two statesForward andReverse. TheForward state is refined into a linear con-
tinuous time system whose output current is proportion#hédanput voltage
by a constantR;. The Reverse state is refined into a system whose output
current is constant and equal i The RC' load model implements the two
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Fig. 3.11 HrVisuAL model of the full wave rectifier.

equations:
1 t
Vout(t) = c Io(t)dt  + Vou(to)
to
‘/out
Io(t) = ILin(t) — Ir(t) = Lin(t) — 7

The simulation result is shown in Figure 3.12.
When the load is replaced by a simple resistor Wighy = RI;;,, HYVi-
SUAL reports an error for the presence of an algebraic loop.

3.3.4 Discussion

HYVISUAL is a graphical environment for modeling hybrid systems.pBra
ical representations have the advantage of being intugie easy to use.
There is arich library of components making the languageesgive enough
to model hybrid systems. Type checking and inference arieadiés features
in designing large systems, because they help the users @wtthe struc-
ture of the system. The implementation of hierarchy mVHSUAL is very

clean and allows the users to encapsulate subsystemsrigéo Hocks. Fur-
thermore, state machines can be hierarchical in the seata giate can be
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Fig. 3.12 HrVIsuAL simulation result for the full wave rectifier

refined in other state machines. This feature of groupingsia very impor-
tant when dealing with systems having a large state-spaieinhportant to
stress that state and transition refinements can be aybRtan.Emy models.
This is different from SMULINK , where the states offETEFLOW are atomic
objects, and the control they exercise over a continuaus-tnodel is via
continuous-time signals with discontinuities rather thkeEnmode transitions.
Finally, HYVISUAL stores the entire design in an XML format, wich can be
easily converted into other XML-based formats using XShsfarmations.

HYVISUAL is based on a solid operational semantics that is missing in
SIMULINK /STATEFLOW or even in MODELICA. HYVISUAL formally defines
the trace that results from the execution of a model with@suming any
particular solver. MODELICA and SMULINK /STATEFLOW both rely on the
particular simulator that completes the definition of tlegerational seman-
tics.

Compared to MDELICA, HYVISUAL can only express causal models
and is based on a graphical syntax that is not always easy mipuiate.
When the model becomes complicated, the number of conneatian grow
quadratically with the number of blocks making the diagraifficult to edit.
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3.4 Scicos

Scicos (SciLaB Connected Object Simulator) is ac&AB package for
modeling and simulation of dynamical systems includinghbodntinuous
and discrete time subsystems [144%18AB (Scientific Laboratory) is a sci-
entific software package for numerical computations thatiges a powerful
open computing environment for engineering and scieniddieations [79].
Since 1990 8iLAB has been developed by researchers from INRIA and
ENPC. In May 2003 the newly created&AB Consortium took over mainte-
nance and development oE&AB. Since 1994 8iLAB has been distributed
freely via the Internet and used in educational and indalsémvironments
around the world. 8icos has been developed also at INRIA and is freely
available for download atttp://www.scicos.org. SCILAB can be seen as similar
to MATLAB while Scicosis similar to SMULINK .

Scicos users can build models of hybrid systems by composing func-
tional blocks from a predefined library (as well as newly-aledi blocks) and
simulate them. This is done within a graphical editor. Aiddially, users can
generate executable C code implementing the functionafisome subsys-
tem in the original hybrid system. This is limited to diserdime subsys-
tems, i.e. subsystems that do not include continuous-tilmeks. The main
application of £1cosis embedded control: continuous blocks can be used
to model the physical environment while the discrete sulesys specify the
functionality of the controller. After simulating and reifig the design of
the controller, the user can generate C code to be executddeotarget
hardware architecture. Finally, for the important caseisiritbuted real-time
applications, the users can rely on thei&osSYNDEX interface [66] to
generate and deploy executable code on multiprocessdrtestares. SN-
DEX is a system-level CAD software for distributed real-timebeided
systems designed and developed at INRIA that is freely availat www-
rocg.inria.fr/syndex”.

3.4.1 ScicosSyntax

A system is modeled in@coshby assembling functional components called
blocksthat interact by means afignals Each signal, in turn, is character-
ized by anactivation time setwhich determines the intervals in which the
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Fig. 3.13 A generic 8icosblock and its /O signals.

signal can evolve and change its value. Each system opeiatisCiCOSis
associated to a block. The activation times of a signal spored to the ac-
tivation times of the block that generates it. Figure 3.1Bsttates a generic
block. This can present ports associated to four differgmas types: reg-
ular input, regular output, activation (event) input, ea&tion (event) output.
By convention these ports are placed respectively on theright, top, and
bottom side of the block. The set of signals ici8os is partitioned into
two subsetsregular signals andactivationsignals. Regular signals are used
to exchange data among blocks, while activation signaly @antrol infor-
mation. Activation signals are also calledent signal®r impulses Regular
inputs are linked to regular outputs viegular paths while activation in-
puts are linked to activation outputs \aativation pathsRegular paths carry
piece-wise right-continuous functions of time whereasneyaths transmit
timing information concerning discrete events (impulsds)particular, an
event signal specifies the time when the blocks connectdtetoutput event
port generating the event signal are updated accordingtotérnal relations
of the block (see Section 3.4.2).

An activation signal causes the block to evaluate its ostpatd new in-
ternal states as a function of its inputs and previous iatestates. A block
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{events)
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{time intervals)

Fig. 3.14 A Sicossignal remains constant outside its activation time set.

with no input activation port is permanently activier(e-dependent blogk
The output signals inherit their activation times set frdma tinion of the ac-
tivation times of the input signals of the generating bldokurn, they can be
used to drive other blocks. The signals leaving the outpiiiaion ports are
activation signals generated by the block. For instanc®c@block may gen-
erate a periodic activation signal that can be connectduetmput of ascope
block to control the sampling of its inputs [144]. There are twoeyahtypes
of blocks:basic blocksaandsuper blocksSuper blocks are obtained as the hi-
erarchical composition of basic blocks and other superdslodgcicoscomes
with a library of more tharr0 basic blocks [144]. Additionally, the users can
build new basic blocks by defining anterfacing functionand acomputa-
tional functionfor each of them. The former is always &i18AB function,
while the latter can also be written in C or Fortran to achigreater perfor-
mance in the simulation. Besides defining the graphicalcsgehe block,
the interfacing function allows users to define the numbertgpes of ports
and to initialize the state and parameters of the block. Tdrepuitational
function specifies the dynamic behavior of the block throagdet of tasks
and is called by the &cossimulator that controls their execution.
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3.4.2 SclicosSemantics

A signal z in Scicosis a pair{z(t),T}, wherez(t) is a function of time
andT is the associatedctivation time sebn which the signak can poten-
tially evolve and change its value [35]. The activation tis® is the union
of time intervals and isolated points calledents In fact, a generic signal
in Scicos can be the result of operating on both continuous (time vatey
and discrete (time events) signals. Outside its activdtioe set, a signal is
constrained to remain constant as illustrated in Figurd,3vhich shows the
evolution of a hybrid signak. Activation time sets are used inc&0sin
the same way aslocksare used in the synchronous programming language
SIGNAL [36, 85], namely as #&/pe checkingnechanism. For instance, two
signals can be constrained to have identical time sets. hiergé the vari-
ous Sicossignal operators induce relations between the correspgrithe
sets. Given a generic binary operafgthe activation time set of the resulting
signal is the union of the activation time sets of its opesamne.:

FHa (), T} Az (1), To} ) = { f21(t), 22(2)), (Th UTy) }

It is possible to reason formally on the time sets oi&ossignals as it is the
case for the clocks of IBNAL variables.” Hence, $1cosusers have a sound
basis for tasks like design optimization and schedulindyaisa

Depending on the type of the block and the directive of theukitor,
the invocation of a computational function may result inimas actions like
evaluation of new outputs, state update, or computatioheo$tate derivative.
There are four types of basic blocks irti80s continuous discrete zero-
crossing andsynchro

A continuous basic blocks (CBEBRn have both regular input (output)
ports and event input (output) ports. CBBs can model mone jilst contin-
uous dynamics systems. A CBB can have a continuous staitel a discrete
statez. Let the vector function: denote the regular inputs agdhe regular
outputs. Then a CBB imposes the following relations:

T = f(t,w,Z,U,p)
Yy = h(t7:1:7 Z,U,p)

“Notice however that the @cosmodel of computation is not the same as thes\L one.
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where f and h are block specific functions, andis a vector of constant
parameters. The above relation represents two constithiatsare imposed
by the CBB as long as no events (impulses) arrive on its evgnitiports.
An event input can cause a jump in the states of the CBB. Assumaeor
more events arrive on the CBB event ports at timeThen the states jump
according to the following equations:

€ gc(teal'(te_)aZ(te_)>u(te_)7panevprt)

y = gd(tmx(te_)a Z(te_)>u(te_)apanevprt)
where g. and g4 are block specific functionsy.,,,; designates the ports
through which the events have arrived, arid ) is the previous value of the
discrete state (which remains constant between any two successive events)
Finally, CBBs can generate event signals on their eventubytprts. These
events can only be scheduled at the arrival of an input elfeauh. event has
arrived at timet., the time of each output event is generated according to

tevo = k(tey Z(te)y u(te)a b, nevprt)

for a block specific functio: and where..,, is a vector of time values, each
entry of which corresponds to one event output port. Nowynalll the ele-
ments oft.,,, are larger than,. If an element is less than, it simply means
the absence of an output event signal on the corresponderg eutput port.
Notice that settingt.,, = ¢” should be avoided because the resulting causal-
ity structure is ambiguous. Also, notice that setting,; = t” does not mean
that the output event is synchronized with the input evenabse two events
can have the same time without being synchronized. The stéhed,, is
recorded inside the CBB in a register that has size equalemtimber of
output event ports. The value in the register is used to “fiie"events at the
specified time. This register can be pre-loaded at the begjrof simulation
by setting the correspondingitial firing in the CBB. Because the register
can hold only one value per output event port, only one outpaht can be
scheduled on each output event port at a time (both at thefiegi and in
the course of the simulation). In other words, by the timeva eeent is ready
to be scheduled, the old one must have been already firedh@nioiterpre-
tation is that as long as the previously scheduled event tidseen fired yet,
the corresponding output port is considered busy, meahaigittcannot ac-
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cept a new event scheduling. If the simulator encounterk auconflict, it
stops and returns theent conflicerror message [144].

While a CBB permanently monitors its input ports and cortimly up-
dates its output ports and continuous stat@isarete basic block (DBB)nly
acts when it receives an input event, and its actions araritesieous. DBBs
can have both regular and event input and output ports, eytritust have
at least one event input port. DBBs can model discrete dycelaystems. A
DBB can have a discrete statedbut no continuous state. Upon the arrival of
events at time,, the state and the outputs of a DBB change as follows

z = fd(t67Z(te_)au(te_)7p7nevprt)
y = gd(te,z,u(te),p)

where f; andh, are block specific functions. The regular outputemains
constant between any two successive events. In fact, tpetouand the state
z are piece-wise constant, right-continuous functions mieti Like CBBs,
DBBs can generate output events according to a specificiumktand their
events can be pre-scheduled via initial firing. The diffeeesbetween a CBB
and a DBB is that a DBB cannot have a continuous state andtthatuit-
puts remain constant between two events. Although in thE&is subsume
DBBs, specifying a block as a DBB has performance advantsiges the
simulator can optimize its execution because it knows thabutputs of the
block remain constant between events. Note that the regutput signal of
a DBB is always piece-wise constant. Being piece-wise emtsioes not
necessarily imply that a signal is discrete. For example otltput of an in-
tegrator (which is a CBB with a continuous state) can, in sspezial cases,
be constant. However, signals that are piece-wise conssanbe identified
based solely on the basic properties of the blocks that gem#rem. In par-
ticular, in Scicos, every regular output signal of a DBB is discrete and every
regular output signal of a state-less time invariant CBEergng only dis-
crete signals on its inputs is also discrete. Thus, theeliserature of signals
in a model can be specified statically. Again, thei&s compiler relies on
this information to optimize the performance of thei§os simulator.

A zero crossing basic block (ZCBBgs regular inputs and event outputs
but no regular outputs, or event inputs. ZCBBs can generant eutputs
only if at least one of their regular inputsosses zerd@i.e., it changes sign).
In such a case, the generation of the event, and its timing,depend on the
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combination of the inputs which have crossed zero and thms sifithe inputs
(just before the crossing occurs). The simplest examplesairtace Crossing
Basic Blockis thezcross [144]. This block generates an event if all the inputs
cross simultaneously zero. Inputs of ZCBBs can start ofieab,zbut cannot
remain equal to zero during the simulation. This is congidem ambiguous
state and is declared as an error. Similarly the input of a EGBould not
jump across zero. If it does, the crossing may or may not kectkxt. ZCBBs
cannot be modeled as CBBs or DBBs because in these blocksimat event
can be generated unless an input event has arrived befarehan

Synchro basic blocks (SBBade the only blocks able to generate output
events that are synchronized with their input events. Thiseks have a
unique event input port, a unique (possibly vector) regugaut, no state, no
parameters, and two or more event output ports. Dependirtbeowalue of
the regular input, the incoming event input is routed to ditb@event output
ports. SBBs are used for routing and under-sampling evgnaks. Typical
examples are thevent select block and thef-then-else block [144].

Synchronization. In Scicosif two event signals have the same time, they
are not necessarily synchronized. In other words, one id fust before or
just after the other but not “at the same time”. Two eventaigican be syn-
chronizedonly whenthey can be traced back to a common origin (a sin-
gle output event port) through event paths, event additiemsnt splits, and
SBBs alone. In particular, a basic block cannot have twolsynized output
event ports. This is possible, however, for super blocks the2-freq clock
block [144].

3.4.3 Example

Scicos does not provide a direct way of describing the discrete dyna
ics of a hybrid automaton as a state machine. Guard conslitiane to be
implemented using threshold crossing detectors, and neaps have to be
implemented using switches that load different initial ditions to dynami-
cal systems. Moreover, changing the continuous dynamigsnes switching
outputs and state variables through different integrapiatins.
Figure 3.15 shows a model of the three-mass system. ThisInsodet

complete and can only simulate correctlycify < x39. Besides the fact that
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Fig. 3.15 f1cosmodel of the three-mass system

whenzsy = 230 the model described in Section 2.2 gives an incorrect answer
the model implemented incScosdoes not guarantee that, is reset before
vzs. An explicit serialization of the two events should be intpented. Also
we assume that; = 1 ande = 0.9. The three coordinates; andy; are
computed by double integration af; anday; respectively. Each integrator
has three input ports: the input function to integrate, tiigai condition and
areset event. When the reset is present, the integrataeswath the current
value on the initial condition input. The horizontal accat®n is always)
but the initial velocities are determined by selectors vehgslection inputs
depend on discrete events. For instance, the horizontatitaebf m; is reset
to (1 — 0.9)vaxy if mo hitsmg (i.e. x9 — 3 crosses zero), tol + 0.9)vzxy if
my hits ms (i.e. z1 — 29 crosses zero) and @9vz- if mso hits the ground
(i.e.ys crosses zero).

The reason why this model simulates correctly onlyidf@y < x3 is that
in the case of events that happen at the same time stampptdeir is not
specified. Ifzoy = x39 then the two events indicating the collision
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Fig. 3.16 Zi1cossimulation result of the three-mass system.

with my and mo with mg are not sequentially ordered and, therefore, the
reset conditions are not guaranteed to be sequentiallyamtdeither. In order

to have a correct simulation, it would be necessary to furthenplicate the
model by implementing a priority scheme on the reset actibhe simulation
results are shown in Figure 3.16.

The Full Wave Rectifier Example. The rectifier example is shown in Fig-
ure 3.17. Similarly to 81ULINK , SCICOS users can organize designs hier-
archically by grouping blocks into super-blocks. A diodeaisuper-block
(shown by the sub-figure in Figure 3.17)composed of a swhel $elects
the output current between two inputs: one proportionah&ihput voltage
and the other constant and equatt,. The selection criteria is based on the
value of the input voltage: the first input is selected if igigater than zero,
the second otherwise.

The simulation results are shown in Figure 3.18. As in thee cals
SIMULINK and HrVISUAL, the circuit cannot be simulated for a pure re-
sistive load due to an algebraic loop error reported by timeilsitor.

3.4.4 Discussion

Scicosprovides a graphical environment for modeling hybrid systeDif-
ferential equations are described using integrators amet ohath operators.
Even if Scicos can model only causal systems, it is conceptually closer to
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Fig. 3.17 Z1cosmodel of the full wave rectifier.
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Fig. 3.18 Zicossimulation result of the full wave rectifier.

MoODELICA than HrVISUAL. A system, in fact, is modeled by specifying
constraints on continuous states and events acting on tHemever, £i-
cos does not provide a graphical tool for the specification aritheenent
of hybrid automata like the finite state machine editor of \HSUAL. In-
stead, the discrete dynamics must be described using thdeslocks and
switches. Building hybrid system models becomes tediougésigners and
reverse-engineering a model to its specification could bedificult. More-
over, adding a state or changing an invariant conditionccogtjuire major
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changes in the model netlist.

On the other hand, thecscosSYNDEX Interface [66] allows users to
pair up Eicosand SYNDEX, thereby deriving a design flow for distributed
real-time embedded control applications that leverageshitbrid systems
approach. SNDEX is a system level CAD software for rapid prototyping
and optimizing the implementation of distributed realdiembedded appli-
cations onto “multi-component” architectures. It is basedhe “algorithm-
architectureadequatiofi (AAA) methodology [80, 158]. The AAA method-
ology aims at finding the best match between an algorithm ardchitecture
while satisfying real-time constraints. This is formatize terms of graph
transformations. The algorithm is specified with a data-ftpaph while the
architecture is capture via a multiprocessor hyper-grapkn, an implemen-
tation is derived by distributing and scheduling the forraerthe latter. The
result of the graphs transformations is an optimidgdchronized Distributed
Executive(a SYNDEX), which is automatically built from a library of archi-
tecture dependent executive primitives composing theutixeckernel [80].
These primitives support boot-loading, memory allocatimrerprocessor
communications, sequencing of user supplied computationtions and of
interprocessor communications, and inter-sequenceshgymzations. The
users are provided with a library of executive kernels farowes supported
processors, while kernels for other processors can bedpbde the exist-
ing ones. Based on this methodologyyNDEX enables rapid prototyping
of complex distributed real-time embedded applicatiorss Ts centered on
automatic code generation, which is performed in threessi@p implemen-
tation onto a single-processor workstation for simulgt(@jy implementation
onto a multi-processor system in order to study paralleligmefits and ac-
celerate simulation; (3) real-time execution on the tadenulti-component
architecture which may include programmable componentscgssors) as
well as non-programmable components like applicatiorci§ipeintegrated
circuits (ASICs). The main feature of therSDEX software is the seam-
less environment that guides the user from the specificégiai (functional
specification, distributed hardware specifications, tiead and embedding
constraints) to the distributed real-time embedded codid, lehrough (multi-
)processor simulations. In particular, it automaticalgngrates, distributes
and schedules real-time embedded code.

By relying on the £1CO0SSYNDEX Interface [66], users can model an
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Fig. 3.19 Modeling embedded control as a hybrid system.

embedded control application inc&osas it is described in Figure 3.19: a
model for the physical plant (the environment) is obtainsithgl continuous-
time blocks while the controller is designed by assemblimggréte-time
blocks. The users can perform the “high-level” simulatidrth® entire hy-
brid system to reach a first-cut design of the controller.nTtiee discrete
subsystem modeling the controller is transfered intjt BEX via the pro-
vided interface to generate the embedded code for the ¢arghstributed
architecture. This step is simplified by the following faqts) Scicos and
SYNDEX share the same model of computation for the discrete sudmyst
(a data flow graph) and (2) the 1/O interface of the functiatiatrete blocks
is the same® Also, SYNDEX tries to take advantage of the parallelism in-
trinsically captured by the data flow model to match the peliain offered
by the target architecture, thereby obtaining an impleatent that satisfies
the real-time constraints. Notice that the interface hastspecifically de-
veloped for this kind of application and does not supporttthaslation of
continuous-time basic bloclendzero-crossing basic blocks

8In fact, it may be the case sometimes that a singtec®s block is translated into a group ofv&-
DEX blocks. For further details see [66].
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3.5 Shift

SHIFT is a modeling language developed at U.C. Berkeley for thergemn
of networksof hybrid automata [63, 64, 152]. The nameiST is a permuta-
tion of HSTIF: Hybrid Systems Tool Interchange Format.

The main difference betweenH8T and other modeling paradigms is
that the overall hybrid system inH&T has a dynamically changing struc-
ture. More precisely, the entire system inIST is called thevorld. The world
consists of a certain number of hybrid components that caseb&royed or
created in real-time as the system evolves. Therefore thetSanguage is
mainly used for the description and simulation of highly gbex hybrid sys-
tems whose configuration varies over time. The conceptioBHFT was
motivated by the specification and analysis of designs #ititomatic con-
trol of vehicles and highway systems (AHS) [16, 61, 62, 78)]1The re-
search area involved in this approach is quite rich, goiomfthe design and
validation of communication protocols [76, 105] to the fiedtion of safe
design [65, 84, 116, 148], and including the developmenudéble imple-
mentation methodologies [70, 77]. Hence the need of a mugl&lamework
that is general enough to capture all these distinct issueie staying at a
low level of complexity to facilitate learning and formalaysis.

At the time SHIFT was developed, other modeling paradigms for the com-
position of multiple concurrent agents included extend&MB [109], Com-
municating Sequential Processes [102], DEVS[104], SDIB[Hhd also the
models of computation described in [107, 140, 176]. Howenxste of them
had the feature to model dynamic configurations of hybrid poments. The
characteristic of being able to describe dynamic netwofks/brid systems
makes $IFT quite unique as a modeling and simulation tool. Areas ofiappl
cation possibly include, together with the mentioned AHBGtraffic control
systems, robotics shop-floors, and coordinated robotiatageith military
applications, like Unmanned Aerial Vehicles (UAV) (see(1111, 160] and
the references contained therein).

3.5.1 SHIFT Syntax

A world in SHIFT is a set:

W:{hl7”’ 7hw}
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whereh; is called thei-th hybrid component in the world. A hybrid compo-
nent can be viewed as a hybrid automatbm having( as the set of discrete
states. In each statee () the continuous state follows a continuous evo-
lution determined by the flow7,, which can be of the form of a differential
constraint or even a simple algebraic definition. An ingéian of a hybrid
component is called gpe A type is a tupleH = (¢, z,C, L, F,T'), where:

q € Q is the discrete state variable;

x € R™ is the continuous state variable;

C = (Cyp,---,Cy) with eachC; C W is the configuration state
variable;

L ={l,---,l,} are the event labels;

F = {F, | q € Q} are the flows;

T are the transition prototypes.

Each component is, at a specified time, in a particular configuratiop.
Hence theconfiguration(or discrete state) of the world is given by the tuple:

CW - (Ch17 T JChw)
The continuous state can be constrained in one of the following ways:

a) @; = ﬂg(m,xco) for differential constraints;

b) x; = F/,(z,z¢,) for algebraic constraints;

wherezc, is a vector containing the continuous state variables ofhall
elements of’y. The set of transition%’ is a set of tupleg of the form:

6=1(q,q,9,E,a)

where:

* ¢,¢' € Q are respectively theourceandsink (discrete) states of
the transition.

e g is aguard condition it takes the form of a (possibly quantified)
Boolean expression. It can assume one of two forms:

(1) g(z,z¢,) (Boolean predicate);
(2) 3c€ C;: g(z,2¢,),1 <i < m (Boolean predicate).
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e F is aset of event labels whose purpose is to synchronize the cu
rent component with the rest of the world. An “internal” tsan
tion, i.e., a transition which does not synchronize witmsgitions
occurring in the other components of the world, is specified i
SHIFT by leavingE empty.

e ¢ is an action that modifies the state of the world. An action may
also create or destroy new components.

In the rest of this section, we give the precise syntax dedmibf com-
ponents and transitions and we will omit parts that are ne¢mgl for un-
derstanding the language semantics. In the following syictalefinitions,
non-terminals are intalics. Keywords and other literal tokens are sans-
serif. Braces indicate repetitio{:X }* means zero or more repetitions &f,
{X}T means one or more repetitions. Brackets indicate optioads pthat
is [X] stands for zero or one instancesf The vertical bar (*) denotes
alternation.

A SHIFT specification is a sequence agfinitions

specification = { definition}*
definiton = component-type-definition
| external-type-definition
| global-variable-decl
| external-function-decl
| global-setup-clause

A component type definition describes a set of components egtnmon
behavior.

component-type-definition =  type type-namd: pareni
{ {type-clause }*} [;]
type-clause = state State-declarations
| inputinput-declarations
|  output output-declarations
| export export-declaration-list
| setup setup-clause
| flow flow-list
| discrete discrete-state-list
| transition transition-list
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Each type can have inputs, outputs and states. Output legiadn be written
to and are visible outside the component and can be used by atmpo-
nents. Input variables are defined as external to the compovigle states
are not visible outside. Exported events can be used to symizle discrete
state transitions among components. The keywiowdis used to define dif-
ferential and algebraic constraints on variables. Eachifi@set of equations
and is identified by a name. The keywatigcrete is used to define a discrete
state with an associated name, flow and list of synchrowoizdéibels:

discrete-state-list = discrete-state-claus¢, discrete-state-clausg®
discrete-state-clause = state-namég { equation-list} ][ invariant expressior]

A transitions is defined as follows:

transition-list transition{ , transition }*
transition from-set-> to-state event-list transition-clauses
from-set set-of-states
to-state state-name
event-list { [event{, event*]}
event local-event

external-event

link-var : exported-event ( set-sync-rule ]
one [: temporary-link

all

[ when expressior [ action-clausg

external-event
set-sync-rule

b _ 4 _ 48l

transition-clauses

A transition specifies the source and target states, a lisymEhronization
events and a set of actions to be taken depending on somedionadEvents

in the event list can be locally defined (i.l¢al-evens) and exported or can
be events defined and exported by other components dxtrnal-evers).
Events can be of typepen or closed. An action is a set of reset assignments,
creation of components and connection of components.

3.5.2 SHIFT Semantics

A SHIFT system starts by executing all initializations of globatiables, at
time ¢ = 0. Then, the system evolves by alternatidigcreteand continu-
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ous phases, starting with a discrete phase. In the discrete ,natidgossi-

ble transitions are taken, in some serial order unless@tplsynchronized.
Time does not pass in the discrete mode. The system switoheantinu-
ous mode when no more transitions are possible. The systelves\vn con-
tinuous mode according to the flow associated to the disstate of each
component. As soon as it becomes possible for one or moreawenfs to
execute a transition, time stops again. A component synctes its state ma-
chine with other state machines by labeling its own edgel lodal-evens
andexternal-everst Local events are exported; they can be used as external
events by other components, and they can appearinection actionsEach
label of an edge? establishes conditions under which a transition may be
taken alongE. When all conditions are satisfied, and the guard, if present
evaluates to true, and the component is in a state thabhes an outgoing
edge, then the transition alorg is taken simultaneously with other transi-
tions as required by the conditions. The conditions astatiaith each label
are as follows. Let andy be components, and a set of components. Let

be a single-valued link, and a set-valued link. Let, be a local event foy,
ande, a local event for all components #.

e If c evaluates tail, an edge labelecte, may not be taken.

e If c evaluates tg;, an edgel’ labeledc:e, must be taken simulta-
neously with an edgé&’ labelede,, in y.

e If ¢, is of typeopen then an edgd”’ labelede,, in y requires that
there exists a componentwith an edgeFE labeledy:e, and E
must be taken simultaneously wiffi. However, ife, is of type
closed then:

— if there is no other componentwith an edgeF labeled
c:ey, Wherec evaluates tg, thenE’ may be taken alone.

— if there is at least one other componenivith an edger
labeledc:e,, wherec evaluates tg, thenE’ must be taken
simultaneously with¥.

e |f C' evaluates to the empty set, the edge labéled may not be
taken ifset-sync-rule is one. Otherwise it may be taken.

e |f C evaluates t& then an edge labeled in anyz € Z may only
be taken simultaneously with an edge labeléd,. The following
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also applies.

— If the synchronization rule isne, then an edge labeled
Ce, may only be taken simultaneously with an edge la-
belede, in a single component € Z. If a temporary link
is specified, it is assigned the componentThe scope of
the temporary link is the action list for the transition.

— Otherwise, if the rule isll, an edge labeled’:e, must
be taken simultaneously with an edge labededn every
z € Z.

Actions are executed in phases as follows.

(1) All components specified byreate-expressianare created.

(2) The right-hand sides and the destinations of resetsvataated,
and so are the component initializers.

(3) The previously computed values for resets and link astiand
component initial values are assigned to their destingation

(4) Connection actions are executed.

3.5.3 Examples

The point massesi;, mo andms are modeled in SHIFT as instantiations of
a type “pointmass”. A pointmass exposes many variablesemther com-
ponents of the world and exports a collision event. It alsodgconnection”
with the mass to its right and the one to its left:
type pointmass|
output continuous number hvelocity, hposition;
output continuous number L, h;
output continuous number X,vX,y,vy;
state continuous number ay:=0.0;
output pointmass rightmass := nil;
output pointmass leftmass := nil;
export collisiontoright;
flow default{
X' = VX;
vx' = 0.0;
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y = vy,
vy’ = ay;
hvelocity = vx;
hposition = x;
b
discrete
on,
off ;
transition
on— > on{collisiontoright /*This mass collides with another one*/
when ( rightmass /= nil and x-= hposition(rightmass) and vx hve-
locity(rightmass))
do {
[*Reset my velocity*/
VX 1= vx*(1-0.9)/2 + hvelocity(rightmass)*(1-0.9)/2;
+

on — > on {leftmass:collisiontoright /*Another mass collides with
this one*/
do {
[*Reset my velocity*/
vX := hvelocity(leftmass)*(1+0.9)/2 + vx*(1-0.9)/2;
I3
on— > off {} /*Falling*/
when(x >=Land vx>0andy>=h)
do {
ay :=-9.81;
I3
off — > off {} /*Bouncing*/
when(y <=0 and vy< 0)

do {
vX := 0.9*vx;
vy = -0.9%vy;
J
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A point mass has two statesy andoff. In the on state, it can collide with
the mass to its right or can be hit by the mass to its left. Winenpioint
massm; collides the mass to its right:;, the collision eventollisiontoright
is notified. Massn; has a transition that is synchronized with the evefnt
mass:collisiontoright. The twoon— >on transitions inm; andm; are then taken
together at precisely the same time. Note that discretesstit not specify a
flow, i.e., the same flow, denoted by the keywaethult, is assumed to define
the dynamics in each discrete state. Instantiation, areatnd interconnec-
tion of types is done by the following code:
global threemass t :ereate(threemass);
type threemasg
output pointmass m1l :zreatg pointmass, L :=7.0,h:=3.0,x:=0.0
,vx:=3.0,y:=3.0, vy :=0);
output pointmass m2 :zreatg( pointmass, L :=7.0,h:=3.0, x:= 6.5,
vx:=0.0,y:=3.0,vy:=0);

output  pointmass m3 = creatg pointmass L
:=7.0,h:=3.0,x:=7.0,vx:=0.0,y:=3.0,vy:=0);

discretea,;

setup

do{

rightmass(ml) := m2;

leftmass(m2) := m1,;

rightmass(m2) := m3;

leftmass(m3) := m2;

i
¥

The three masses are created and initialized. thleemass type has only
one discrete state. Before entering statine setup clause is executed and
connections among components are established.

The SHIFT source code is compiled into standard C code which is used,
together with other libraries, to generate an executabhellstion file. The
user can choose between a command line and a graphicabhuedidr de-
bugging the code. Since we could not compile the graphicat inderface,
we had to rely on the textual printing ability of thei&T executable simula-
tion in order to show the correctness of the model.
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The Full Wave Rectifier Example. The full wave rectifier is modeled as a
set of components:
type diode {
output continuous number i;
input source s;
flow
res{
i=10.0 *v(s);
H
zeroi{
i=0.0;
b
discrete
forward {res},
reverse{zeroi};
transition
forward — > reverse{}
when(v(s)< 0.0),
reverse— > forward { }
when(v(s)>=0.0);
¥

type source{
output continuous number v;

output continuous number vsd,;
output continuous number vs;
input load [;
input continuous number wo;
flow default{

vsd’ = -w0*wO0*vs;

vs’' = vsd;

v=vs - v(l);
}

discretea;

¥
type load {
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output continuous number v;
input diode d1;
input diode d2;
flow default{
V' =-v*10.0 + (i(d1)+i(d2))*10000.0;
}

discretea;

¥
A diode is a type with two statesorward andreverse. When in forward state,
the flow that defines the output current is the Ohm’s law. Wimereverse
state, the output current is set to zero. The input voltadbdaaliodes is gen-
erated by two sources. gource generates an output voltage equal to the dif-
ference of an internally generated sinusoidal waveformth@dutput voltage
of a load component.

The creation and interconnection of all the componentsrisechout by

the following SHIFT program:

global rectifierRC r :=create(rectifierRC);

type rectifierRC{
output source sl :=reatg source , vs := 0.0, vsd := 4.0*314.0, w0 :=
314.0);
output source s2 :=createg( source , vs = 0.0, vsd := -4.0*314.0,
w0:=314.0);

output diode d1 :=createg(diode, i := 0.0);
output diode d2 :=createg(diode, i := 0.0);
output load | :=creatg(load, v := 0.0);
discretea,;
setup
do{

I(s1) :=1;

I(s2) :=1;

s(dl) = s1;

s(d2) :=s2;

di(l) :=d1,;

d2(l) :=dz;
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}

Notice that the two sources are initialized with differeaiues in order to
generate a sine wave and its opposite respectivelylfands2.

3.5.4 Discussion

SHIFT is a modeling paradigm for the description of dynamic neksanf
hybrid components. The major distinction with respect teeotnodeling lan-
guages for hybrid systems (likeHBRON, or MASACCIO) is that in SHIFT the
configuration of the examined system (calledrld in the SHIFT jargon) is
dynamic, meaning that it results from the continuous coeédiestruction of
objects, each modeling a distinct hybrid sub-system. Tésedption of net-
works of hybrid automata, which is intrinsic ta48T, can in principle also
be carried out using other modeling languages, but it weaddire additional
effort because languages like4€@RON or MASACCIO are oriented towards a
static description of the modeled system.

A SHIFT component can export events. Components can label their tra
sitions with events exported by other components. Sinck suents can be
emitted on automata transitions#1®T1 allows composition of hybrid systems
both in the continuous and discrete domains. The automatzhsynization
feature eases the composition of models and results in adrapeacification
as it the case for the three mass systems.

SHIFT is both a programming language and a run-time environment fo
the simulation of dynamic networks of hybrid automata [126¢ompiler for
translating a 81FT program to a C program is also available. More recently a
new language has been developed by the research groupehtacti®iIFT.

Its name is\-SHIFT [156]. Like its predecessok-SHIFT is a language for the
specification of dynamic networks of hybrid components aigldesigned to
provide a tool to simulate, verify and generate real-timeector distributed
control systems arising in applications like AHS and theeotmentioned
above. What really distinguishesSHIFT from its predecessor is the syntax:
A-SHIFT is an extension of the Common Lisp Object System (CLOS) [39,
159]. In particular, in order to provide a better use of thedS_capabilities,
the Meta-Object Protocol (MOP) [38] has been extended taigeoanopen
andspecializabldmplementation of the\-SHIFT specification language.
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3.6 Charon

CHARON, an acronym forcoordinated control, hierarchical design, analy-
sis and run-time monitoring of hybrid systensa high-level language for
modular specification of multiple, interacting hybrid sysis developed at
the University of Pennsylvania [3, 4, 5, 8].HERON is implemented and
distributed in a toolkit that includes several tools for gmecification, de-
velopment, analysis and simulation of hybrid systems. TRa®ON toolkit

is entirely written in AvA and features: a graphical user interface (GUI), a
visual input language (similar toTATEFLOW), an embedded type-checker,
and a complete simulator. The graphical input editor casvitre specified
model into GHARON source code, using an intermediate XML format. The
plotter is based on a package from the modeling tool Ptoleleyeloped at
U.C. Berkeley. It allows the visualization of system traessgenerated by
the simulator. The @ARON toolkit is also fully compatible with external
programs written inAvA ; the simulator itself is an executable Java program.
The CHARON toolkit Version 1.0 is freely distributed and can be dowwled
from http://www.cis.upenn.edu/mobies/charon.

3.6.1 CHARON Syntax

The CHARON language enables specificationasthitecturalas well asbe-
havioral hierarchies and discrete as well as continuous activities.

The architectural hierarchy reflects the composition dfirtlis processes
working in parallel. In this framework, the basic buildinptk is represented
by anagent Agents model distinct components of the system whose execu
tions are all active at the same time. They can be of two typ@sitive and
composite. Primitive agents are the primitive types ordasilding blocks
of the architectural hierarchy. Composite agents are eeioyparallel com-
positionof primitive agents. Other main operations supported byhegare
variable hidingandvariable renaming The hiding operator makes a speci-
fied set of variables private or local, that is other agentsotaccess private
variables for read/write operations. Variable hiding iempkentsencapsula-
tion for data abstraction. Variable renaming is for supportmgjantiation of
distinct components having the same structure. Agents aorioate among
themselves and with the external environment by means oéghariables,
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which represent input/output/state signals of the ovérdirid system.

The behavioral hierarchy is based on the sequential cotqosif sys-
tem components acting sequentially in time. Such compsnarg called
modes Modes represent the discrete and continuous behaviors afent.
Each agent consists of one or more distinct modes that Bestré flow of
control inside an agent. Modes can contain the followingnelets: control
points (entry points, exit points), variables (privatepuiy output), continu-
ous dynamics, invariants, guards, and nested subm@iedrol pointsare
where the flow of control enters or exits the given mode. Thecetion of
the mode starts as soon as the flow of control reaches an enittygmd ends
when it reaches an exit point. uard conditioncan be associated to each
control point (entry point or exit point). A guard conditiam a rule or a set
of rules enabling the control flow to actually go trough a gientry or exit
point, i.e. enabling the hybrid systems to maljeirap or discrete transition.
As for agents, variables in a mode represent discrete ointmnts signals. In-
put and output variables represent respectively input atlb signals of the
agent, while private variables either represent statesgwhich are not vis-
ible externally, ottrue auxiliary variables such as those necessary to perform
some functional computation. Modes candiemic or composite compos-
ite modes contain nested submodes which can themselvesij@site or
atomic. Modes can have three types of constraints:

e invariants: the flow of control can reside in a mode as long as
an inequality condition, called thavariant, is satisfied (e.g. it
andy are two variables, an invariant can be of the faim- y| <
€). When invariants are violated the flow of control must elxé t
active mode from one of its exit points.

e differential constraints: these are used for modeling continuous
dynamics evolving in the current mode (e.g. by differentiglia-
tions, like:z = f(x,u)).

e algebraic constraints algebraic equations model resets of vari-
ables occurring during discrete transitions of the hybyistem.
The values of the variables are reassigned using an algedxai
pression, such ag= g(x, u).

Agents and modes are represented as tupl&s=f(tq, ..., t,) is atuple
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then the element; of 7' is denoted ag'.¢;. This notation can be extended to
collection of tuples, so that $7 is a set of tuples, then:

ST.t; = U {Tt;}
TeST
Variables should be formally distinct from their valuasomjiven a set” of
variables avaluationis a function mapping variables ¥ to their respective
values.Qy denotes the set of all possible valuations dvelf s is a valuation
of variables inV andW C V, thens[IV] is the restriction of the valuation
s to variables inl¥. Continuous-time behaviors of modes are modeled by
flows. A flow is a differentiable functiorf : [0,4] — Qy, whered is called
theduration of the flow.
AmodeisatupldE, X,V,SM,Cons,T) where:

e [ is a set of entry points and is a set of exit points. There are
two particular control points: default entryde € E and adefault
exitdr € X.

e VV is a set of variables, which can be analog or discrete (charac
terizing signals for flows and jumps of the hybrid systempees
tively). Variables can also be local, their scope beingtiahionly
to the active mode, or global, if they can be accessed extfgrna

e SM is a finite set of submodes.

e Consis a set of constraints, which can be of three typif$eren-
tial, algebraicandinvariant, as described above.

e T'isasetof transitions of the kin@, ., x), wheree € EUSM.X
andx € X USM.FE; «, called theactionassociated to the current
transition, is a relation frond)y to @y and it updates variables
(analog or discrete and global or local) when the mode urndsrg
the transitionT".

A mode withSM = () is calledatomic Top-leveimodes are composite modes
that are not contained in another mode (they can only be ic@utéan agents);
they have only one non-default entry point and have no diegitl points.

The syntax of agents is simpler than that of modes. An agdntnsally
defined as atupl€l’M, V., I'), whereV is a set of variabled, is a set of initial
states and’M is a set of top level modes. The set of variadlesesults from
the disjoint union of the set of global variablé$ and local variabled/;
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formally: V' = V, UV, with V,NV; = (. The setl of initial states can specify
a particular initialization of the variables in the agenheTelements of an
agent can be accessed through the “dot” operator: for exampV;, is the
set of global variables of the agent

Intuitively, top-level modes iff"M describe the behavior (i.e., execution
in time) of the agent. As for modes, variables in agents cdoda or global.
Primitive agents have only one top-level mode, while cornipagents con-
tain several top-level modes and can be obtained as thdgya@iposition
of primitive agents.

The execution of an agent can be derived from those of itdetog-
modes. A primitive agent has a single top-level mode, whulagosite agents
have several top-level modes (each possibly containinghedbs) and re-
sults from the parallel composition of other agents. Exeoutrajectories
start from the specified set of initial states and consists#guence of flows
interleaved with jumps, defined by the modes associatecetadgent. In par-
ticular, the jumps correspond to discrete transitions efahvironment or of
one of the modes of the agent, while flows are concurrent mooitis execu-
tions of all the modes of the agent. Traces are obtainedagimby projecting
onto the global variables.

Agents can be combined using the operators of variable dnidiariable
renaming and parallel composition. The hiding operatoresakset of vari-
ables in an agent private. Given an agdnt (7'M, V, I), the restriction to
Vi isthe agentd\ {V;,} = (T'M, V', I) with V/ = ViuV}, andV] =V, — V.
The renaming operator makes a replacement of a set of wesiaidide an
agent with another set of variables. This is useful for faigng the agent
with its external environment (i.e. with other agents). let= {z1,...,x,}
andV, = {uy1,...,yn} be indexed sets of variables with C A.V. Then
A[Vy := V3] is an agent with the set of global variables.V, — Vi) U V5. Par-
allel composition is used to combine agents to form a hiéieat structure.
The parallel composition; || A, of the two agents!; and As is an agentA
defined by the following relations:

e ATM = A1 TMUA, TM
o AV, =A1.V,UAV,andAV; = A1.V,U A3V
o if s € Althens[A;.V] € A.1l ands[Ay.V] € Ay
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3.6.2 CHARON Semantics

Modes can exhibit both a continuous and discrete behawidrnot at the
same time: this implies that a mode undergoes a sequenjen@f (dis-
crete transitions) anffows(continuous executions). During a flow the mode
follows a continuous trajectory subject to the correspogdlifferential con-
straints. As soon as the trajectory no longer satisfies tlagiant constraints,
the mode is forced to make a discrete transition.

A jump is a finite sequence of discrete transitions of subra@atel tran-
sitions of the mode itself that are enabled by the correspgnguards. Any
discrete transition starts in the current active state®htiode and terminates
as soon as eitherragular exit point is reached or the mode yields control to
its external environment via one of its default exit conoint.

Formally, the semantics of a mode is represented by its sstagfutions
An execution is a path through the transition graph indugethb mode and
its submodes of the form

A A
(60780) —1> (61781) —2> T )\n(enasn)y

wheree; is a control point and; a state in the form of a variable evalua-
tion. The transitions\; represent either discrete jumps or flows. Jumps can
be taken by the mode, in which case they are denoted by a ajroleby the
environment (changes to the global variables of the modetlgr @ompo-
nents while the mode is inactive), denotedeby he initial and final state;
ands;,1 of a jump, as well as the corresponding control points musiooe
sistent with the transitions and the corresponding actisels of the mode.
Otherwise )\, is a flow f; of s;_; defined ovef0, ] (the duration of the flow),
and such thay;(t) = s;. Externally, the semantics of a mode is represented
by its set oftraces which are obtained by projecting the executions onto the
global variables of the mode. That is, a trace is obtaineh fach execution

by replacing every; with s;[V,], and everyf in transition labels withf [V].

Compositionality. The semantics of EARON is compositionaln the sense
that the semantics of one of its components (possibly thesemybrid sys-
tem) is entirely specified in terms of the semantics of itsceutponents.
Compositionality holds for both agents and modes. Inddezlsét of traces
of a given mode is determined by the definition of the moddfieed by
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the semantics of its submodes. For a composite agent thétsates can be
reconstructed from the traces of its top-level modes.

Compositionality results can be extended to the operatoragents by
introducing a refinement relation on modes and agents. A niddefines
a modeN, written M < N, if it has the same global variables and control
points, and every trace a@ff is a trace ofV. The compositionality properties
implies that if M.SM < N.SM, thenM < N.

Similarly, an agent4 refinesan agentB if A.V, = B.V,, and every
trace of A is a trace ofB. Compositionality results holding for modes can
be naturally extended to agents because an agent is basiaasllection of
modes with synchronized flows and interleaving jumps. Inipaear agent
operators areompositional with respect to refinemeRormally, the result
states that the operations on agents are monotonic retative refinement
order. Thus, assumd < B, A; < By and A, < B, are agents}); =
{z1,..., 2.} andVy = {y1,...,y, } are indexed sets of variables with C
AV, and letV;, C AV.Then A\ {V,} = B\ {W}, A[Wi = W] =<
B[V; := V] andA; || A2 < By || Be. This result is particularly useful to help
reduce the complexity of refinement verification by applyaanpositional
techniques. In practice, refinement can be verified at thepooent level
using predicate abstraction (to reduce the complexity toieefstate model),
and can be extended to the entire system using the compatdityoresult [4].

3.6.3 Examples

The CHARON distribution comes with a graphical user interface for thecs
ification of agents, modes and their interconnectioRARONV ISUAL is a
Java front-end that can be used to input a hybrid systemfiimin. In ad-
dition, CHARONVISUAL can generate akBARON netlist that can be compiled
and simulated. Figure 3.20 shows a model of the full wavefrectircuit.
The system is composed of four agents: two diodes, a load souree block.
A diode has two modes: forward and reverse. A project is dtoran XML
file with all the model as well as graphical information. Thed® agent con-
tains a top mode defined by the following code snippet:

mode DiodeTop()

read analog realvin;
readWrite analog real iout;
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Fig. 3.20 G4ARON model of the full-wave rectifier circuit.

modeFInst = forward();

modeRlInst = reverse();

trans startfrom defaultto FInstwhentruedo { }
trans F2Rfrom FInstto RInstwhen (vin < 0)do { }
trans R2Ffrom RInstto FInstwhen (vin > 0)do { }

The forward mode is described as follows:

mode forward()
readWrite analog real iout;
read analog realvin;
inv Finv { vin >=0}
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Fig. 3.21 G4ARON simulation results of the full-wave rectifier with RC load.
algeOuteq{ iout==vin }

In forward mode the diode’s output current is proportional to the inmlitage
by a constant that in this case we assume to be equal to oneel@kien be-
tween input voltage and output current is declared in anbadge constraint.
The invariant constraint declares that a diode staysrivard mode as long
as the input voltage is greater than or equal to zero. Wherntlagiant is
violated, the output transition2R is enabled and the diode switches to the
reverse mode whose output current is equak-d.
The load is modeled as a dynamical system:
agentRCload()

read analog reali2;

read analog realil;

readWrite analog real vl;

init {viI=0}

modetop = RCloadTopMode(0.00001, 1000);

mode RCloadTopMode(real C, real R)
read analog reali2;
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read analog realil;
readWrite analog real vl;
diff Loadeq{ d(vl) == -vl/(R*C) + (i1 +i2)/C }

It has one mode of operation that declares one differentiasttaint for the
load voltage. Simulation results are shown in Figure 3.21.

The Three-Mass Example. We model the three-mass system with only one
agent in order to show how modes can be hierarchically ozgdniThe hybrid
system model is very similar to theMBULINK /STATEFLOW one. The minor
differences concern the invariant specification. Figug2 3hows the com-
plete model. Each mode is characterized by the same diffar@onstraint
that specifies the motion of the three masses:

diff motion{

d(vx1) == 0.0 ; d(x1) == vx1 ; d(vyl)==ayl ; d(yl)==vyl,

d(vx2) == 0.0 ; d(x2) == vx2 ; d(vy2)==ay2 ; d(y2)==vy2;

d(vx3) == 0.0 ; d(x3) == vx3; d(vy3)==ay3 ; d(y3)==vy3

¥

Differently from SMULINK /STATEFLOW and other tools like MVi-
SUAL that have triggering transition semanticsSiHARON has enabling se-
mantics meaning that a system is allowed to stay in a modengsds the
invariant constraint is satisfied (even if a guard on a tteorsis also satis-
fied). Therefore, we must declare in each mode an invariargtnt that is
the conjunction of the complement of the guards on the outpositions. To
this end, we have to distinguish, for instance, mad&ounce (wherem2
andm1 are still on the table) from mode3purebounce (where all masses
have fallen from the table). The reason is that in the firseea$ and m2
can still collide, thereby requiring a transition to madét¢m?2, while in the
second case the collision cannot happen. Figure 3.23 shmnsirnulation
result. First we note that, in the simulation, the balls kemying to the right,
despite the fact that, because the system is Zeno, theydstiboiove past
a certain point. This artifact is a consequence of the mininitne imposed
by CHARON in traversing each state, a condition that causes time tayalw
progress. Second, the balls (correctly) do not fall belogvftbor level, con-
trary to the other tools that we have evaluated. This is sxthe transitions
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Fig. 3.22 G4ARON model of the three-mass system.

are not only sensitive to events, i.e., changes in the valfidise variables
that may go undetected because of the size of the integratém but are
also forced by the violation of the state invariants, whighsiatic constraints
evaluated on the present value of the variables.
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Fig. 3.23 GHARON simulation result of the three-mass system.

3.6.4 Discussion

By combining the notions odgentand modethe language GARON sup-
ports the hierarchical modeling of hybrid systems both etarchitectural
and behavioral level. For the hierarchical descriptionhef $ystem architec-
ture, GHARON provides the operations of instantiation, hiding, and lpelra
composition on agents, which can be used to build a complextagom
other agents. Modes are used to describe the discrete atidumrs behav-
iors of an agent. For the hierarchical description of thealvadr of an agent,
CHARON supports the operations of instantiation and nesting ofeaot@he
description of complex discrete behaviors is facilitatgdte availability of
features such as weak preemption and history retentionethas\by the pos-
sibility of invoking externally defineda¥A functions. Continuous behaviors
can be specified using differential as well as algebraictcaimss, and invari-
ants restricting the flow spaces, all of which can be declate@rious levels
of the hierarchy. Guard conditions irH@RON are enabling and not triggering
like, for instance, in ¥ VISUAL. This means that an enabled guard condition
may or may not necessarily be taken. This is an importanttgoikeep in
mind when one builds a i@ARON model that uses triggering transitions as
in the case of the three-mass example. Invariants are cthetkan-time and
an error is reported when an invariant is violated and ncsttiam is enabled.
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Unfortunately, this is one of the few debugging featuresrefl by the current
implementation of GARON.

The modular structure of the language is not merely symtabtit it is
exploited by analysis tools and it is supported by a formahaatics with
an accompanying compositional theoryrobdular refinemen{s, 7]. Com-
positionality is obtained by restricting the way in which gbhd system is
specified. In general, every tool that targets verificatioth synthesis imposes
restrictions on the input specification, while more freedsrteft to the de-
signers by those tools that target simulation lik&1$LINK /STATEFLOW and
MODELICA.



A4

Tools for Formal Verification

This chapter is dedicated to the tools (all coming from ana@dgfor the for-
mal verification of hybrid systems. Formal verification iswappealing as a
concept since it avoids the pitfalls of simulation that aatrguarantee design
correctness. Formal verification is intendegbtovethat some properties hold
for all admitted modes of operation of the system under amalyts power
is limited by the complexity of the analysis that grows veayge as the size
of the system increases beyond fairly simple designs. Theway to use
formal verification is by leveraging abstraction to build aets that have few
variables but do not lose the accuracy necessary to modehér@omena of
interest.

Formal verification amounts to an intelligent exhaustivarse in the in-
put space of the designs. Intelligence lies in the explonathechanisms and
in avoiding searches in uninteresting parts of the inputspgormal verifica-
tion allows one to identify errors by backtracking mechargsn the search
space that provide an example of faulty behavior and thabeamsed to de-
bug the system.

For dynamical systems, safety properties [126] are theesag check.
Safety is related to the impossibility of the system to emtébad” set of
states. To check for this condition, all the formal verifioattools reviewed

87
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here use some sort cdachabilityanalysis, i.e., they identify the set of states
that can be reached from a set of initial conditions undert @fsallowable
inputs.

We begin our review with MTECH, the first tool to be developed for the
formal verification of a class of hybrid systems. We followthvan analy-
sis of MASAcCcCIO, a language that was developed by the same investigators
as HvTECH, but that addresses a very important topic in formal methods
compositionality Compositionality makes it possible to infer properties of
an ensemble from the properties of its components, thugdsiog the com-
plexity of the overall analysis. RECKMATE, developed at CMU, is likely
the most used tool for formal verification of hybrid syste@se of the most
interesting features of KECKMATE is its input language, a subset of the
SIMULINK language, hence offering a nice environment where sinomati
carried out with a popular tool, and formal verification cantgnd-in-hand.

If there is indeed a chance that the system may enter a badl thteh for-
mal verification tools can be used to synthesize a contrtila;, if it exists,
keeps the system away from the bad statessbtL andd/dt are both con-
troller synthesis tools and, for this reason, are of paicinterest for the de-
velopment of embedded controllers. In particulav,3BEL is appealing since
it is based on well-developed piecewise-linear technigues mathematical
programming. However, MSDEL requires an initial discretization step left
to the user that converts continuous dynamics into a desaeé. The dis-
cretization step requires choosing the sampling time thatth be selected
depending on thé&astestdynamics of the system even if in some region the
system evolution is much slowet/dt even though it uses the most advanced
techniques known today, still suffers from limitations kpeessive power and
high complexity. We conclude the chapter with a descriptibtihe toolboxes
that have been recently developed based on the use ellifrmoidal calculus
to compute approximations of continuous sets.

Reachability analysis has been the suject of much reseaock iw the
recent past and several toolboxes have been developed mutoneachable
sets efficiently. Among these, MATISSE [74, 75] is of partaunterest for
hybrid systems. Given a constrained linear system, MATISBEputes a
lower dimensional approximation of the system, and pravieeor bounds
for this approximation using an approximate bisimulatietation that cap-
tures the most significant characteristics of the systenamycs. The preci-
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sion of the bisimulation provides a bound of the distancevben the trajec-
tories of the system and of its abstraction. The toolbox k&i#dhe distance
of the unsafe set from the reachable set of the abstractidheo$ystem is
greater than the precision of the approximate bisimulaficihat is the case,
then the original system is safe. Because these toolboresaarspecific to
hybrid systems, we will not cover them here in detail, anén#ie interested
reader to the rich literature covering the topic [138].

An excellent review of the state-of-the-art tools for fofmerification of
hybrid systems was published in 2001 by Silva et al [154]. {bloés reviewed
included Hr TECH, CHECKMATE, d/dt, UPPAAL (an integrated tool envi-
ronment for modeling, validation and verification of reiah¢ systems that
are modeled as networks of timed automata, extended wightyla¢s such as
bounded integers, arrays, etc.) [34, 58], areRBICT (a framework for the
modeling of hybrid systems described as Hybrid Conditioaf Systems
(HCES) in the GLESTE language that provides translation fronEESTE
to the input format of other tools such ayHeCH) [161]. These tools were
compared and analyzed using a simple digital-control @mbla chemical
batch reactor that became the workhorse example for forerdication. The
comparison was made on the basis of expressive power anolideauch as
the capability of running simulations, the possibility pegifying constraints
in temporal logic and the presence of a graphical user axterfThe paper
contains also a section discussing the features that theterust offer in
order to reach industrial success for the design of embecileitiol systems.
In particular the authors advocate that

e developers of formal verification tools enable the reuseistiag
models of plant and controllers;

e tools for interactive model building and analysis intetpten be
provided since, as we also argued, complexity can be beatgn o
by using appropriate abstractions of detailed models;

e aids be given to translate informal requirement speciboatinto
formal specifications, since formal specifications areaygliificult
to write for practicing engineers.

We agree with most of the conclusions of the authors and weechot to
repeat their analysis. Our review focuseshbmma fidehybrid-system tools.
Hence, we do not consider all timed-automaton-only toothsis UPPAAL,
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KRrRoNos(a model checker for hybrid automata) [43, 60] amk¥s (an ex-
tension of KRONOSwith a compiler for programs written in the synchronous
language BTEREL) [37, 53]. Since we focus in this chapter on environments
that offer verification algorithms, we also excludegRrRbICT from consider-
ation.

We tried several formal verification tools on realistic higbexamples in
the automotive domain. We have concluded that without Sagmit effort in
abstraction and modeling, the tools would simply not be adegfor indus-
trial strength examples. Much research is needed to briagabls and the
frameworks to a degree of maturity that will make them usdiylelesign
engineers.

4.1 Introduction to Verification Methods

A simulator for hybrid systems solves the following problegiven an initial
discrete location (or state) and an initial value for thetcwous variables,
compute a temporal sequence of hybrid states that compitashe speci-
fication of the system and its semantics. At each point in tinsimulator
computes one location and one value for all the variablegprésence of
non-determinism or uncertainty, a simulator has to makeaacehin order
to produce a unique value. For deterministic systems, and tmique (or a
limited set) of initial condition, simulation could be a gbanalysis tool. In
many cases, the initial condition belongs to a set and siimgléhe system
for all possible initial conditions is not possible. Moreoydue to abstraction
and parameters that are not known in the early design stagesystem is
non-deterministic. Simulation is not the right tool to use dnalysis in these
cases because the ability of discovering corner cased i® léfe experience
of the designer. One would like to know if it is possible, foyaf the system
behavior, to reach a state in the system that leads to uat&sievents. This
requires to check whether a hybrid state is reachable fanitidll conditions
and all possible choices of non-deterministic values.

Thereachability problentan be stated as follows (and its formulation is
independent of the discrete, continuous or hybrid natutbeogystem): given
two statesr ando’ of a system, i’ reachable fronw?

For discrete time systems, the reachability problem has bgtensively
investigated. There is a conspicuous set of powerful tamisérification of
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discrete systems like SMV [44] and SPIN [103].

Verification for continuous and hybrid systems is partidylahallenging
because the reachable set of states is uncountable. Caundirvariables, in
fact, range over intervals of real numbers. As in the caseésofete systems,
where reachable states are implicitly represented for ple@using binary de-
cision diagrams, a suitable representation for sets céstads to be chosen.
Such representation must be compact and have an efficietegrmaptation.
The choice depends on many factors, but the most importatbarcomplex-
ity of the operations to be performed on sets of states anchéreory space
needed to store the representation.

Consider affine hybrid systems. The dynamics, in each destoeation
[, are equations of the form = A;z + Bju. Letly be the initial location and
Xy € R™ be the set of initial states for the continuous vector oariablesz.
Intuitively, one would let time elapse while in locatignand compute the set
of reachable states until the invariantv(ly) is violated. In order to compute
such set, one has to be able to perform the following sequainmeerations:

(1) rotate a set to comput€’ = {A4;,z|z € Xo};

(2) compute the geometric sum of two sets
X" = X"+ {Bj,ulu € U};

(3) perform the intersectioX” = X" N Inv(ly);

(4) check ifX"" is empty.

Once the set of reachable states has been computed in otierlpdahas
to be intersected with the guards of the outgoing transtiondetermine the
reachable locations.

The complexity of the four operations on sets introducedvalutepends
on how such sets are represented. While various represastaiased on dif-
ferent geometric primitive objects are possible, the twsthmmportant ones
are based on polyhedra (e.g.[13] and [97]) and ellipsoids 143]. Depend-
ing on the dynamics of a system, the reachable set can besegped exactly
using unions of polyhedra (as in the case of constant raterag$ or it can
just be over-approximated.

Consider the case where we want to check if a system can restettea
that belongs to a set of bad statgs,. This problem can be solved by com-
puting the reachable sét and checking ifR N Sy,q # (0. For general dy-
namics, however, we can only compu® O R, an over-approximation of
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the reachable set. Consequently, if the verification reisuthat the over-
approximated system is safe then we can also claim that stersyis safe
because?’ N Spuq # 0 = RN Speq # 0. If, instead, we determine that the
over-approximated system is not safe, then we cannot makelam on the
safety of the actuall system and the over-approximationthesefined in
order to improve its accuracy. Unfortunately, for genesalamics the reach-
ability problem is undecidable [99], therefore a verifioatialgorithm based
on successive refinement is not guaranteed to terminate.

4.1.1 The Full-Wave Rectifier Revisited

In this section we revisit the full-wave rectifier exampleealdy introduced
in Section 2.2. We want to verify that for a given input vokag, = A -
sin(27 fot) with A =~ 4V and fy ~ 50H z, and an initial condition,;(0) ~
4V, at any timet the output voltage,,.(t) does not drop below a certain
thresholdv,,,;, .

Since most of the verification tools only allow linear dynasjiwe use a
second order differential equation to model the sinusaigalt. Also, we use
two state variables, andx; such that:

<§?>:<—<22f0>2 é)(ﬁ)

with initial conditionszy = —A/(27 fp) andz; = 0. The solution of this sys-
tem givesr; = A - sin(27 fot). The uncertainty on the oscillation frequency
translates into an uncertainty on the initial condition #imel system matrix.
The uncertainty on the amplitude translates into an unogytan the initial
condition only.

If we model the sinusoidal input, the system becomes autonsnEven
if some of the tools also allow the specification of boundemlits, we explic-
itly model the voltage source.

We also eliminate thenon discrete state. This choice is motivated by the
fact that, in order to have both diodes on, we must haye> v,y A —v;iy, >
vour Which impliesv,,; < 0 that, in our circuit, is never true. The hybrid
automaton that models the full-wave rectifier is shown inuFég4.1 where
we renamed;,, to z1 andw,,; t0 xs.
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4.2 Hytech

HYTECH is a symbolic model checker fdinear hybrid automataa sub-
class of hybrid automata that can be analyzed automatibgllgomputing
with polyhedral state sets [10, 11, 90, 91, 98]. The devekgrof Hy TECH,

a joint effort by T. Henzinger, P. Ho and H. Wong-Toi, wentdhgh three
phases [91]. The earliest version o HECH, developed at Cornell Univer-
sity, was built on top of the commercial tool MHEMATICA [174] and lin-
ear predicates were represented and manipulated as sgridrofiulas [10].
Based on the observation that a linear predicate aveariables defines a
union of polyhedra inR™, the second generation o ECH [90] combined
a MATHEMATICA main program with calls to a library of efficient routines
for polyhedral operations [86]. This change provided a dpge of one or-
der of magnitude with respect to the first prototype. Thedthieneration of
HyTEecH is a fully-rewritten C++ program that is two to three ordefsnag-
nitude faster than the previous one. This implementatioHoT ECH, how-
ever, uses exact arithmetic and suffers from overflow erigsssuccessor,
HYPERTECH, uses interval arithmetic and is able to model more comigita
dynamics. A detailed guide to the last version as well asd EcH-related
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papers is given in [91].

Hy TECH takes two inputs: a hybrid system description and a set dfy-ana
sis commands. The hybrid system, which is modeled as a tiohleaf linear
hybrid automata, is specified textually using the H:CH system description
language [91]. A linear hybrid automaton consists of a fict@trol graph
whose nodes are callembntrol modesand whose edges are calledntrol
switchestogether with a seX of continuous variables. The continuous dy-
namics within each control mode are subject to a constarythpdral dif-
ferential inclusion, while the discrete dynamics are medddy the control
switches each of which has a guard condition and a resettgmmdiver X .

A state is a pair consisting of a control mode and a vector dalike val-
ues. Before drafting the textual description, the users wTECH must (1)
identify the concurrent components of the system (and tmenzenication
mechanisms between the components), (2) model each contpasiag a
hybrid automaton, and (3) conservatively approximate dwdinid automa-
ton with a linear hybrid automaton. While (1) and (2) are camnnio most
of the tools that we take into account (if they support contfmog, the last
step is required in order to model complex continuous dynamsing linear
dynamics. H TECH processes the textual specification and derives a model
for the whole system by performing a parallel compositiothesproduct of
these automata. The analysis commands are given using g siompmand
language that allows the specification of iterative progrdar performing
formal verification tasks such as reachability analysisemar-trace genera-
tion.

4.2.1 HYTECH Syntax

HyYTECH models a hybrid systems as the parallel composition of lihga
brid automata (LHA). A LHA uses an ordered s&t = {z1,x2,...,2,}
of real-valued variables to model continuous activitiei.variables in the
system are global and declared at the beginning of a hybst&sydescrip-
tion and can be of typdiscrete |, clock ,stopwatch ,parameter ,or
analog . A valuationV(X) is a function that associates a pointift to X.

A linear expressiorover X is a linear combination of variables i with
rational coefficients. Ainear inequalityis an inequality between two linear
expressions and @nvex predicatés a finite conjunction of linear inequali-
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ties. Apredicateis a finite disjunction of convex predicates, defining a set of
valuations.

An linear hybrid automaton is defined by a set of discreteestat loca-
tions, initial conditions, invariant conditions, traneiis and rate conditions
where:

e |ocationsare control modes that are used to define the discrete
states of the automaton. L& = {vy,vs,...,v;} be the set of
locations;

e theinitial conditionis a predicate ovek;

e invariant conditionsare convex predicates ovér. For a location
v, inv(v) is the invariant associated with that location;

e transitionsare labeled edges between locations. Eet V x V
be the set of edges. An edge is labeled withupdate seind a
jump condition The update seY is a subset ofX and the jump
condition is a convex predicate ov&r U Y’, where primed vari-
ables refers to the value of the variables after the tramsitror a
transitione = (v;, v;) from locationv; to locationv;, labelact(e)
denotes the condition associated to the transition;

e rate conditionsare convex predicate ovéf where for a variable
z € X, 4 € X denotes the rate of changeafFor a locationv,
dif(v) is the rate condition associated to that location;

e synchronization labels a finite setl of labels. A labeling func-
tion syn assigns a subset of labels frarto each edge. Synchro-
nization labels are used to compose automata.

Commands are built using objects of two basic typegion expressions
for describing regions of interest, abdolean expressiortbat are used in the
control of command statements. Regions may be stored iablas, provided
the region variables are declared via a statement such as

var initreg, final_reg: region;

which declares two region variables calleidreg andfinal_reg. HY TECH pro-

vides a number of operations for manipulating regions,uidicly comput-
ing the reachable set, successor operations, existengaatifjcation, convex
hull, and basic boolean operations. For added convenig¢hees are built-
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in macros for reachability analysis, parametric analytbis,conservative ap-
proximation of state assertions [89], and the generatiarmai trajectories.

Parametric Analysis. An important feature of MTECH is the ability to
perform parametric analysis, i.e. to determine the valtidesign parameters
for which a linear hybrid automaton satisfies a temporalelagquirement.
With parametric analysis, model checking can be used to gorkthe mere
confirmation that a system is correct with respect to cenmaguirements.
While completing the specification of a system, the usersdeaide to in-
troduce some parameters as symbolic constants with unkrfowd values.
These values will be defined only later at the design impleatem stage.
Meanwhile, parametric analysis makes it possible to determecessary and
sufficient constraints on the parameters under which safetgtions cannot
occur. Common uses for parametric analysis include detémmiminimum
and maximum bounds on variables, and finding cutoff valuesifeers and
cutoff points for the placement of sensors.

4.2.2 HYTECH Semantics

At any time instant the state of a hybrid automaton is defing@ kbontrol
location and a valuation of all variables . The state can change because
of a location change or because time elapseslata trajectory(d, p) of a
linear hybrid automaton consists of a non-negative dumafio= R>( and
a differentiable functiorp : [0,0] — R™. A data trajectory(d, p) is av-
trajectory for a locatiorw, if for all reals¢ € [0,0], p(t) satisfiesinv(v)
and p(t) satisfiesdif(v). A trajectory of a hybrid automaton is an infinite
sequence:

(vo, 60, po) = (v1,61,p1) = (v2,02,p2) — ...

of locationsv; andv-trajectories(d;, p;) such that/i > 0, there is a transition
e; = (Ui, Ui-‘,—l) and(,ol-(él-), Pz+1(0)) SatiSﬁeSﬂ,Ct(ei).

A hybrid system is modeled in HTECH as a composition of lin-
ear hybrid automata that coordinate through variables amthsoniza-
tion labels. Letd; = (Xl,Vl,invl,difl,El,actl,Ll,synl) and A, =
(Xo, Va,inve, dife, Eo, acts, Lo, syns) be two linear hybrid automata of di-
mensionn; andns, respectively. The producti; x A, is a linear hybrid
automatord = (X1 U Xo, Vi x Va,inv, dif, E,act, L1 U Lg, syn) such that:
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e for each location(v,v’) € Vi x Vi, inv(v,v') = invi(v) A
inva(v') anddif(v,v'") = difi(v) A difa(v');
e E contains the transition = ((v1,v]), (v2,v4)) if and only if
(1) v; = v} and there is a transitiog, = (ve, v}) € Ey with
Ly Nsyn(ez) =0 ;or

(2) there is a transitiom; = (v1,v]) € Ey with syn(e1) N
Ly =0, andvy = v); or

(3) there are transitions; = (vi,v]) € E; andey =
(ve,vh) € E5 such thatsyn(e) N Ly = syn(e2) N Ly.

In case (1)act(e) = acta(ez) andsyn(e) = syna(ez). In case
(2),act(e) = acty(e1) andsyn(e) = syni(ey). In case ()act(e)
has the update set equal Yo U Y5, the jump condition that is
the conjunction of the jump conditions, asgn(e) = syn(e;) U
syn(es).

Symbolic Model Checking. Model checking-based formal verification is
performed by considering the state space of the system naodehutomat-
ically checking it for correctness with respect to a requieat expressed in
temporal logic [51]. In particularsymbolic model checkingnakes it possi-
ble to do so more efficiently by using constraints that regmestate sets,
thereby avoiding the full enumeration of the entire statecsd44, 52, 139].
Whenever a system fails to satisfy a temporal-logic requéet, a model
checking tool generates an error trajectory, i.e. a timeaped sequence of
events that leads to the requirement violation. This is goomtant feature
because designers can use error trajectories for debugfygngystem. The
model-checking approach has been extended to severakslagsnfinite
state-transition systems, includitigjmed automat4l, 93]. The symbolic rep-
resentation of state sets is necessary for timed automatsodhe presence
of real variables that have infinite domains.

Timed Automata and Linear Timed Automata. With symbolic model
checking, timed automata can be effectively analyzed byipodating sets of
linear constraints. For timed automata, these linear caings are typically
disjunctions of inequalities whose components are boungledz — y < b
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wherez, y are real vectors andis a constant integer vector. Time automata
have a finite bisimilar quotient meaning that it is possibleartition the state
space in a finite number of regions and obtain a finite tramsgystem where
transitions are in bijection with transitions of the origirsystem. Therefore,
the quotient system is safe if and only if the original sysiesafe. This prop-
erty allows one to perform verification on a finite automatoimear hybrid
automatg11] are an extension of timed automata where the lineartainss
can be disjunctions of inequalities of the fouti: < ¢ whereA is a constant
matrix andc a constant vector. The consequence of this extension, leoyigv
that the bisimilar quotient transition system could havénéinite number of
states. Therefore, model checking is no longer guarantegstrninate. Still
termination occurs often in practice and, when it does nogn be enforced
by considering the system behavior over a bounded intefuahe [98].

Linear hybrid automata are more expressive compared tor ddre
malisms for which model checking is possible, such as finiteraata and
timed automata. That notwithstanding, there are still mampedded appli-
cations that do not satisfy the linearity requirement. kesthcases, it is pos-
sible to derive a&onservative approximatioof the system in terms of linear
hybrid automata, so that the satisfaction of the correstmequirement by
the approximated model guarantees the correctness ofitherabrsystem as
well [92]. On the other hand, when the approximate systeratée the re-
quirement it is necessary to (1) check if the generated gamctory belongs
to the original system and (2) refine the approximation wien#his is not
the case.

4.2.3 Example

In order to model the full-wave rectifier inYHI'ECH we have to approximate
its behavior. The approximation is required because tloeitidynamics can-
not be written as convex predicates &n For instance, when diodB; is in
the on state and; is in the off state, the dynamics describing the continuous
evolution of the output voltage &,,: = (vin — Vout)/(RfC) — vour/(RC')
that is a linear expression over both the variables and fingtiderivatives.

We approximate the circuit as follows. The sinusoidal \gdtaource is
approximated by a triangular voltage source as shown inr€ig2. Between
the two bounds, we select the one that is indicateldwer in the figure.
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~Y

Fig. 4.2 Upper and lower bound lines for the approximatiothefsinusoidal voltage source.

The state variables are the input voltagg, the output voltage,,,; and
a clock variablep that is used to switch the voltage source between positive

and negative first derivative.

var
X, —Vin
v : analog — vout
p : clock;

The voltage source is described by the following automaton:
automaton voltagesource
synclabs ;
initially up &x=-4&p=0;
loc up: while p < 1/100 wait { dx =800}
whenp= 1/100 do { p’= 0} goto down;
loc down:while p< 1/100 wait { dx =-800}
whenp= 1/100 do { p’= 0} gotoup;
end-voltagesource

the clock variabley switches the sign of the derivative every half period.

The rest of the circuit is modeled by the following automaton

automaton circuit
synclabs;
initially offoff & v =4;
loc onoff: while X >=v & v + x >= 0wait { dv= 800}

whenx <=v &v+x <=0do{Vv =v } gotooffon ;

whenx <=v &v+x >=0do{Vv =v } gotooffoff ;
loc offon: while x <=v & X + v <= 0 wait { dv= 800}



100 Tools for Formal Verification

whenx >=v &v+x >=0do{Vv =v } gotoonoff ;
whenx <=v &Vv+x >=0do{Vv =v } gotooffoff ;
loc offoff: while x <=v & v +x >= 0 wait { dv= —40}
whenx >=v &v+x >=0do{Vv =v } gotoonoff ;
whenx <=v &Vv+x <=0do{Vv =v } gotooffon ;

end—circuit

We have done two approximations:

¢ we have considered ideal diodes meanitg = 0, therefore the
capacitor charges at the same rate as the input;

e intheof fof f state we consider a discharge current equal to the
maximum current oft/(R « C') (where4V is the peak voltage,
R=1KQandC = 100uF).

The hybrid system description is followed by the analysiscdgtion:
var init_reg, finalreg, reachedegion;
init_reg:= loc[voltagesource]=up & x=-4 & p=0 & loc[circuit]=offoff &=4;
final_reg:= loc[circuit] = offoff & vj=4-1/2;
reached= reach forward from init_regendreach
print reached;
if empty(final_reg & reached)

then prints "Rectifier is SAFE”;

else prints”Rectifier is UNSAFE”;

endif;

The analysis section declares the initial set as a reigioreg defined by the
initial discrete locations for the automaton and the valieeghe variables.
The initial set is the conjunction of discrete locations @oti/hedral regions

in the state variables space. In the analysis commandsynfigot & refers to

set intersectiom. The verification checks whether the output voltage drops
below 3.5V and also prints the set of reachable states. The output ®ks
follows:

Location: down.offoff
x + 800p = 4 & 20v = X + 76 & X <= 4 & 21x + 76 >= 0
I

X + 800p = 4 & X + v
Location: down.offon

x + 800p = 4 & X + v
Location: down.onoff

X =4 & v =4 &p=20
Location: up.offoff

0 & x +4>=0 & 0 >= 21x + 76

0 &x+4>=0 & 0 >= 21x + 76
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800p =x+4 & x + 20v =76 & x +4>=0 & 21x <= 76

|

800p = x + 4 & v = X & X <= 4 & 21x >= 76
Location: up.offon

X+ 4=0 & v =4 &p =0
Location: up.onoff

800p = x + 4 & v = X & X <= 4 & 21x >= 76
Rectifier is SAFE

For each location, the set of reachable states is reportadidegunction
of convex polyhedra (described as a conjunction of inetji@g)i

HY TECH also supports parametric analysis. Parameters cannoeberus
the definition of the dynamics. In our case, this means fomgia that it is
not possible to directly parameterize the load resist@s.dossible, though, to
define different locations for thef fof f state each with a different discharge
rate and check the safety property for a discrete numberssijple loads.

HYTECH supports differential inclusions. It would be possibley; iio-
stance, to define the input voltage rate condition to be alusion like dx
in [800,900]. Unfortunately the exact arithmetic used by HeCcH leads to an
overflow error.

4.2.4 Discussion

HYTECH can efficiently analyze systems modeled with linear hybud a
tomata, either directly or through conservative approxioms. Hy TECH
uses exact arithmetic that gives exact answers to the redighguestion. On
the other hand, it is difficult to find accurate enough polyhaédbstractions
for many systems without computational bottlenecks. A itestediscussion
of some of the lessons learned from developingTiHCH is provided by its
authors in [94].

HY TECH users must minimize the number of continuous variablesain th
models and avoid models whose neighbouring control modesept very
different rate conditions. In other words,yAIECH is better suited to high-
level system descriptions where the continuous variab&e® feither sim-
ple dynamics or can be adequately abstracted to ones withlesidynam-
ics, e.g. rate-bounded systems. Parametric analysis wlithid number
of parameters is reported to be often successful, but thgsimaf systems
with complex relationships between multiple parametedsteming constants
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generally leads to arithmetic overflow, due to algorithm lenpentation. In
practice, users must userHECH iteratively to refine their model by further
abstracting each system component or merging multiple ooes into a
single one. As recognized by its authors, “it is a fine art toose a level of
abstraction that is simple enough forvHECH to complete and yet accurate
enough for properties to be proven” [94]. We found that ttasesnent applies
not only to Hr TECH but also to all formal verification frameworks we have
worked with.

4.3 PHAVer

The Polyhedral Hybrid Automaton Verifier, PHA [71], is a tool for the
safety verification of hybrid systems with piecewise-canstbounds on the
derivatives. PHAWR uses exact arithmetic whose robustness is guaranteed
by the use of the Parma Polyhedral Library [26]. Safety \&tfon reduces
again to the reachability problem, which is decidable owlyd subclass of
hybrid systems called initialized rectangular hybrid awéba. PHAWER uses
an on-the-fly over-approximating algorithm to approximpiecewise affine
dynamics with the decidable subclass. Moreover, a set afritthgns have
been developed to reduce the number of bits and number ofraonts that
are needed to represent polyhedral regions, improving \aeath efficiency
of the verification algorithm. PHA¥R has also the capability of comput-
ing simulation relations and of deciding equivalence affiieenent between
hybrid automata.

4.3.1 PHAVER Syntax

PHAVER syntax is similar to the one of HTECH. PHAVER uses hybrid 1/0
automata. Given a set of variablgs a valuation is a functiom : V' — R
andV (V) is the set of all possible valuations Bf. An activity is a function
f Ry — V(V) andact(V) is the set of activities ofV. Also, a set of
activities S' is time-invariant if forall activitiesf € S and for alld € R, the
function defined ag;(t) = f(¢ + d) is also inS (i.e., S is closed under time
shift).

Definition 5. A Hybrid Input/Output Automaton is a tupleH =
(L, Vs, Vi, Vo, L,—, Act, Inv, Init) where:
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L is afinite set of locations;

e Vg andV; are finite and disjoint sets of controlled and input vari-
ables, respectivelp, C Vg is the set of output variables. Let
V=ViuVg;

e L is a finite set of synchronization labels;

o C LxLx2YV)V(V) x [is afinite set of discrete transitions;

e Act : L — 2°*(V) is a mapping that associates to each location a
set of time-invariant activities;

e Inv: L — 2Y(V) is a mapping that associates to each location a
domain;

e Init C LxV(V)isasetofinitial states such thdtv) € Init =

v e Inv(l).

The concrete syntax used to specify a hybrid automatonadsvaly simi-
lar to the one used by HTECH. The general structure of a hybrid automaton
is specified as follows:

automaton aut
state var: var_ident, varident,... ;
input_var: var_ident,varident,... ;
parameter: var_ident,varident,... ;
synclabs lab_ident,lahident,... ;
loc loc_ident: while invariant wait { derivative };
whenguard synclabelidentdo { transrel } gotoloc_ident;
when...
loc loc_ident: while ...
end

The main difference is that PHASR distinguishes between input and
controlled variables, whereas inyAlECH all variables are global. This dis-
tinction is important for equivalence checking. Tdherivative invariant, and
guard can be linear formu over the controlled and input variables, which
increases the expressive power of PHZRWwith respect to M TECH.

As in HYTecH, PHAVER defines a set of analysis commands for the
verification of a hybrid system, which are described in the section.
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4.3.2 PHAVER Semantics and Verification Strategy

The semantics of hybrid automata is described in [2]. At amg tinstant the
state of a hybrid automaton is a péitv) of a location and a valuation of
the controlled variables. The state can change becausesiraté transition
or because time elapses. A run of a hybrid system is then amténér finite
sequence of states:

to t1 to
> — =2 ...
70 7 01 0277,

whereo; = (li,vi), t; € R+, fz S ACt(li), such that:

* fi(0) =
o forall0 <t <t¢, fz(t) S ITL’U(ZZ')
® 0 &) Oi+1, |eaE|N : (’Ui,’Ui+1) € pu (li7aiau7 li+1) €—

Notice that a system may stay in a location only if the locaiiovariant is
true. Composition of hybrid automata is defined as in Seecti@rP.

The type of activities that can be modeled in PH&Ware conjunction
of linear expressions over the variables and their devigatiThese kind of
hybrid systems are called affine. Unfortunately, for affigbrid systems the
reachability analysis is undecidable [99]. PHR¥ computation is based on
Linear Hybrid Automata (LHA) that is a subclass of hybridteyss already
defined in Section 4.2. The idea is to over-approximate alfyiid systems
with an LHA.

PHAVER implements an on-the-fly over-approximation algorithnt ika
based on the following principle. Consider a locatiomith invariant Inv(l)
and activity specified by the conjunction of linear expressi

m

Nali+blesye , e {<, <}

=1
Then it is possible to approximate each linear expressioh the following
simple rule:

Vi=1,..,m az-Ta': > ¢; — d; d; = inf biT:r
zelnv(l)

If the approximation is too coarse, a location is split inesrth improve accu-
racy. We illustrate this algorithm with a simple example jethis graphically
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Fig. 4.3 PHAVERapproximation example.

rendered in Figure 4.3. Consider the equation
U= —0v

that can be written aé < —dv A —0 < dv. Let the invariant bef < v < a.
For the two linear equations we can compute the bounds asrifred by the
algorithm:

inf dv = —da inf —dv=-900
velB,a] vE(B,a]

We obtain the approximationda < v < —4¢. Starting from a single point
as initial condition, we can compute the reachable set, shiovrigure 4.3,
as the area enclosed by the two lines= —dat andv = —4§5t. If this
approximation is too coarse, we can split the location inlbcations along
the hyperplanes = ~. The new locations have invariants < v < ~ and
v < v < a, respectively. The reachable set is the area enclosed luottes
lines that refines the previous approximation. The hypegsdalong which a
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Fig. 4.4 Invariant region that confine the sinusoidal wakefo

location is split can be specified by the users who can guidedfinement
process by relying on their knowledge of the system. For aentatailed
explanation we refer the reader to [71].

4.3.3 Example

The full-wave rectifier model consists of two hybrid automaa voltage

source and a circuit. The system of differential equatidred generates the
sinusoidal waveform is marginally stable, therefore angreapproximation

would accumulate. In order to avoid this problem, an invar@an be added
to confine the input voltage in an octagon as in Figure 4.4. ddue that

implements the voltage source is the following:

al :=0.01272; // lower bound on intersection with x0-axis
au :=0.01274; // upper bound on intersection with x0-axis
bl :=4; // lower bound on intersection with x1-axis

bu :=4; /] upper bound on intersection with x1-axis



cu :=1.4143; // upper bound on sqrt(2)

al :=0.0127; // lower bound on intersection with x0-axis
au := 0.0128; // upper bound on intersection with x0-axis
bl := 4; // lower bound on intersection with x1-axis

bu :=4; // upper bound on intersection with x1-axis

cu :=1.42; // upper bound on sqrt(2)

x1min :=-bu;
x1max ;= bu;
x0min ;= -au;
xOmax := au;

automaton voltagesource

state.var: x0, x1;

synclabs B ;

loc 10x0: while
X0min <= x0 & X0 <= x0max &
xImin <= x1 & X1 <= x1lmax &
x1 >= bl-bl/al*x0 &
x1 <= cu*bu-bl/au*x0 &
0 <=x0 & x0 <= x0max &
0 <=x1&x1 <= x1lmax
wait { X0 == x1 & x1' == -98596*x0 };
whentruesyncB gotol0x1;
whentruesyncB gotol1x0;

loc 10x1: while
X0min <= x0 & X0 <= xOmax &
x1min <=x1 & x1 <= x1max &
x1 >= bl-bl/al*(-x0) &
x1 <= cu*bu-bl/au*(-x0) &
XOmin<=x0&x0 <=0&
0<=x1 & x1 <= x1max
wait { X0' == x1 & x1' == -98596*x0 }
whentruesyncB gotol10x0;
whentruesyncB gotol1x1;

loc 11x1: while
X0min <= x0 & X0 <= x0max &
xImin <= x1 & x1 <= x1max &
-x1 >= bl-bl/al*(-x0) &
-x1 <= cu*bu-bl/au*(-x0) &
X0min<=x0&x0 <=0&
xImin<=x1&x1 <=0
wait { X0" == x1 & x1' == -98596*x0 }
whentruesyncB gotol0x1;
whentruesyncB gotol1x0;

loc 11x0: while
X0min <= x0 & X0 <= xOmax &
xImin <= x1 & x1 <= x1lmax &
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-x1 >= bl-bl/al*x0 &
-x1 <= cu*bu-bl/au*x0 &
0 <=x0 & x0 <= xOmax &
xImin<=x1&x1 <=0
wait { X0 == x1 & x1' == -98596*x0 }
whentruesyncB gotol1x1;
whentruesyncB goto10x0;

initially : $ & x0 ==-0.01273 & x1 ==0;

end

The rest of the rectifier is described by the following auttona

automaton circuit
state_var: x2;
input_var: x1;
synclabs A ;
loc onoff: while
X2min <= X2 & X2 <= x2max &
X1-x2>=0&-x1-x2<=0
wait { x2’ == 100000*x1- 100000*x2-10*x2
whenxl -x2 <= 0 & -x1-x2 >= 0 syncA do {x2'==x2} goto offon;
whenxl - x2 <=0 & -x1 -x2 <= 0 syncA do {x2'==x2} goto offoff ;
loc offon: while
X2min <= X2 & X2 <= x2max &
-x1-%x2>=0&x1-x2 <= 0wait { x2' ==-100000*x1 - 100000*x2-10*x2
whenxl - x2>=0 & -x1 - x2 <= 0 syncA do {x2'==x2} goto onoff ;
whenxl - x2 <=0 & -x1 - x2 <= 0 syncA do {x2'==x2} goto offoff ;
loc offoff: while
X2min <= X2 & X2 <= x2max &
x1 -x2 <=0 & X1 - x2 <= O wait { x2' == -10*x2}
whenxl - x2>=0 & -x1 - x2 <= 0syncA do {x2'==x2} goto onoff ;
whenxl - x2 <=0 & -x1 - x2 >= 0 syncA do {x2'==x2} goto offon ;
initially : offoff & x2 == 4;
end

The circuit model is described as an affine hybrid system.symehroniza-
tion labels are not really needed. We included them only lezdhey are

preently required by the parser, although they have notedfethis model.
PHAVER provides a set of analysis commands to compute an over-

approximation of the reachable set of states. In the fullemactifier case,

we use the following commands:

sys=voltagesource&circuit;

sys.add_label(tau);

sys.set_refine_constraints((x0,au/8),(x1,bu/8),(x2, 1/32),tau);
reg=sys.reachable;

reg2=reg;
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reg.remove(x0); // project to x1 and x2
reg.print("out_reach",2); // save for plots
reg=reg2;

reg.remove(x2); // project to x0 and x1
reg.print("out_reach_x0x1",2); // save for plots
reg2.print("out_x0x1x2",1); // save for 3D plot

The first line defines a system as the composition of the vekagrce and
the circuit automata. The following two lines are used tadgutihe location
splitting. Theset_refine_constraints command declares a list of elements of the
form (linear_expr,min). A location is split by a hyperplane of the fonmear_expr
< ¢ wherec is the center of the location. The paramet&r is the minimum
extent of a location.

The commandeg.reachable computes the set of reachable states of the
systemreg. It is then possible to project away some variables and gémer
the results. The reachable set (wher&as been projected away) is shown in
Figure 4.5.

4.3.4 Discussion

PHAVER is a very promising verification tool. It has some unique test:
among others, the ability of computing simulation relasicand deciding
equivalence and refinement between hybrid automata. Tlfecaéon algo-
rithm is very efficient: the full-wave rectifier is verified ir748s on a Pentium
4 processor running &8GH z.

PHAVER allows to compose hybrid systems preventing the number dis-
crete states to grow exponentially. The class of modelscdrate described
is the class of affine hybrid systems. Thanks to the rich conthi@nguage,
the user can guide PHAYR in splitting locations by defining splitting hyper-
planes. This is extremely important in order to tune thefiation process
and reach a useful answer in a short time.

4.4 HSolver

HSOLVER is a tool for the safety verification of hybrid systems [14@} d
veloped at the Max-Planck-Institut fur Informatik in Skharcken, Germany.
HSOLVER uses the general idea of reducing the infinite state spacénpf a
brid system to a finite one by partitioning the continuouscspato boxes.
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Fig. 4.5 Reachable set generated by PHAY

The basic reachability analysis is hence approximateel&thorithm returns
a negative answer, then the verification tool should refiag#rtition to make
sure that indeed the set of “bad” states is not reachable.

HSOLVER approaches this problem by using the information of the con-
tinuous evolution inside the boxes to prune the search dpamwaunreachable
regions. Therefore, the refinement process does not alveagstb split boxes
but can also rely on the efficient pruning algorithm.

4.4.1 HSOLVER Syntax

The syntax of the HSLVER input language can be understood on the basis
of the following model [149]. Let € {sq, ..., s, } be a variable that takes val-
ues from a finite set of of discrete modes, and..., z;, be variables ranging
over closed intervalg, ..., I, respectively. Letb denote the resulting state



4.4. HSolver 111

space{si, ..., sp} x I; x ... x I.. The derivative of a variable; is denoted
by 2; and the targets of the jumps are denoted by primed variaBlesn-
straint is an arbitrary Boolean combination of equalitied enequalities over
terms that may contain function symbols like x, exp, sin andcos. A state
space constrainis a constraint on the variables, ..., z;. A flow constraint
is a constraint on the variablesz1, ..., 7y, 71, ..., Zr. A jump constraintis
a constraint over the variablesz1, ..., z, s’, 2, ..., .. The description of a
hybrid system consists of a flow constraint, a jump condirairstate space
constraint describing the set of initial states, and a sipéee constraint de-
scribing the set of unsafe states. For instance, considdulthwave rectifier.
The set of discrete states{isnof f,of fon,of fof f} and there are two con-
tinuous variables;,, andv,,;. A flow constraints for the entire circuit can be
described as follows:

. Vin — Vout Vout
(8 =onoff — Vout = —f—~— — A Vin 2 Vout N —Vin < vout) A

R;C RC
. —Vin — U (%

(8 = OffOn — Vout = #C,Out - P;g N Vin S Vout N\ —Vin Z vout) A
. Vout

(8 = Offoff — Vout = — RC N Vin S Vout \ —Vin S vout)

Notice that in this formulation jumps are forced by not aliogva flow in a
certain region. In our example, we have included the inmésian the defini-
tion of the flow constraint.

Each constraint (flow, jump, initial states and unsafe sjaie satis-
fied by a set of values, drawn from the corresponding domaith@fcon-
straint. Thus, the hybrid system can be equivalently desdrby the tuple
(Flow, Jump, Init, Unsafe) where

P x RF
P x P
P
P

Flow
Jump
Init
Unsafe

N 1N

-
-

The input language of H&.VER allows the description of hybrid
systems by specifying modes, continuous variables, and tthme
(Flow, Jump, Init, Unsafe). A hybrid system description has the follow-
ing declarations:
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e a list of the names of the variables spanning the continutais s
spaceVARIABLES

e a list of the names of the discrete modes:
MODES
[m1,...,ms] .
e For each mode, the hyper-rectangle spanning the corresgpnd
continuous state space:
STATESPACE
m1[[I1,ul],..,[In,un]]

ms{[[I1,ul],...[In,un]]
where[li,uil denote the lower and upper bound for variable
e For each mode, a constraint describing the set of initidéstan
this mode:
INITIAL
m1l { constraint }

ms { constraint } .

e For each mode, a constraint describing the continuous &wolu
in this mode:
FLOW

m1l { constraint }

ms { constraint }
The constraint may contain the variables as specified usiag t
keyword VARIABLES, and these variables followed bg to repre-
sent the corresponding derivatives.

e For each pair of modes, a constraint describing discontiguo
jumps of trajectories:
JUMP

mi — > mj { jump constraint }

mk — > ml { jump constraint }
The constraint may contain the variables as specified usiag t
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keyword VARIABLES and their primed versions. The unprimed
versions describe the jump source and the primed versians th
jump target.

e For each mode, a constraint describing the set of unsafesstat
this mode:
UNSAFE
m1l { constraint }

ms { constraint } .

4.4.2 HSOLVER Semantics

The semantics of a hybrid system in HS/ER is defined by the set of ad-
missible trajectories. For a function: R>o — @, letlimy_,, r(t') = (¢, f)
denote the left limit of- att, wheref is the left limit of the real-valued com-
ponent ofr and ¢ is the discrete state when, for taking the limit, the state
variable is considered as a piecewise constant and lefiacmus function.

Definition 6. A continuous time trajectory is a function R>g — ®. A
trajectory of a hybrid systertFlow, Jump, Init, Unsafe) is a continuous
time trajectoryr such that:

e if the real-valued componenf of r is differentiable att,
and limy ., r(t) and r(t) have an equal modes, then

((s, f(t)), f(t)) € Flow,

e otherwise(limy _; r(t'),r(t)) € Jump.

A trajectory from a state to a statey is a trajectoryr such that(0) = x and
3t € R>¢ such that(t) = v.

The semantics of a hybrid system is the collection of itetgjries. Note
how these definitions represent essentially a simplifioatiothe general de-
finition that was given in Section 2.1, Definition 3. In paul&r, one could
derive an equivalent hybrid time basis (Definition 2) by pianing the real
line into intervals over which the mode remains constant.
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4.4.3 HSOLVER Safety Verification

HSoLVER builds an abstraction of a given hybrid system by decomgasia
state space into boxes. Then it uses the observation thahtip@ box B
can be reachable only if it fulfills one of the three followiognditions:

e itis reachable from an initial point i via a continuous flow;
e itis reachable from a jump t8 via a continuous flow;
e itis reachable from the boundary Bfvia a continuous flow;

The approach formalizes these three conditions in thedmdgy predicate
language (i.e., as constraints that do not contain anyrdifteation symbols),
and then uses the interval constraint propagation-badedr9eSOLVER to
remove points from boxes that do not fulfill any of these ctiads! If this
is not sufficient to verify the safety of the input system,nthiee abstraction
is refined by splitting boxes into pieces, and further prgrtime state space
using the approach above. Due to the fact that the conssalaér allows
non-linear constraints as input, and that it is complet&prous (i.e., the
correctness of the results is not affected by rounding €yrét SOLVER in-
herits these properties.

4.4.4 Examples

In this section we show how the full-wave rectifier can be dbed and ver-
ified. The set of modes of the rectifier {sn1, m2, m3, m4} denoting the
statesonof f, of fon, of fof f and onon, respectively. The HSLVER hy-

brid system description of the full-wave rectifier is asdolk:

VARIABLES [X0,x1,x2]
MODES [ m1,m2,m3]
STATESPACE
m1[[-5,5],[-5,5],[0,4]]
m2[[-5,5],[-5,5],[0,4]]
m3([-5,5],[-5,5],(0,4]]
INITIAL
mM1{x0<=-0.012/\x0>=-0.0134/\x1=0/\x2=4}
FLOW
mM1{x0_d=x1}{x1_d=-98596*x(} { x2_d=100000*(x1-x2) - 10*x2
m2{x0.d=x1}{x1.d=-98596*x( {x2_d=-100000*(x1-x2) - 10*x2
m3{x0.d=x1}{x1.d=-98596*x0 {x2_d=-10*x2}

IRSoLVERis available ahttp://rsolver.sourceforge.net
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JUMP
ml— >m2{x1<x2/\-x1>=x2}
m2— >m1{x1>=x2/\-x1<x2}
ml— >m3{x1<x2/\-x1<x2}
m3— >m1{x1>=x2/\-x1<x2}
m2— >m3{x1<x2/\-x1<x2}
m3— >m2{x1<x2/\-x1>=x2}
UNSAFE
m3{x2<3.5}

The input voltage peak amplitudé ranges betweeB.8V and4.2V, R; =
0.1Q2, R = 1KQ, C = 100uF and fo = 50H z. The threshold voltage is set
t0 Vi, = 3.5.

The verification could not terminate. In this example, exiedy fast
movement happens near the mode switches in a very smalltaBga.VER
needs a huge number of abstract states to achieve the mgcsssaration in
this small area. Moreover, H&VER cannot exploit the fact that the problem
is linear and deterministic.

4.4.5 Discussion

HSOLVER uses a traditional interval method for the verification obhg
systems in an abstraction-refinement framework. When thiéication al-
gorithm finds that a system is unsafe, the over-approximasaefined by
reducing the grid size. HA.VER improves this traditional method by im-
plementing a pruning algorithm that removes uninteregbagds of the state
space before reducing the grid size. Consequently, thesraént of the over-
approximation can be obtained even without increasing thrber of grid
locations, one of the causes of exponential blowout in thiieation algo-
rithms for hybrid systems.

The language for describing hybrid systems is very easy tienstand.
There are no limitations in describing a single automatod e limited
number of statements in the language makes it simple to USeL\VR does
not support hierarchy and composition of hybrid automata.

45 Masaccio

As we have already seen in the previous sections, the coathjgrarchy for
the specification of complex systems is quite consolidatéginow point our
attention to the possible ways of nesting components iratgaical systems,
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since -as we will see below- MsAccl0 offers the greatest flexibility in this
sense.

We already mentioned the concurrent and sequential hréesrof some
modeling tools like SATECHARTS [87], UML [40] and Ptolemy [59]. Other
languages, like BARON, also address specifically the issue of hierarchical
modeling for hybrid systems. However, all these modelimgalisms focus
on simulation rather than formal analysigools that support compositional
verification are some variants offSrECHARTS, hierarchical modules and
hybrid I/O automata. A\TECHARTS has been extended in [168] with variants
that allow compositional verification, but still suffers dme major limita-
tions, most notably the absence of supportdssume-guarantee reasoning
Hierarchical modules [6] provide both serial and parall@nposition and
support assume-guarantee, but components can be onlgtdisitrus there is
no way of characterizing continuous-time behavior. On tixeiohand hybrid
I/O automata [133] can also model continuous-time compisnbuat serial
composition is not supported.

MAsAcclois a modeling formalism for compositional verification ofhy
brid systems that goes a step further. Hybrid systems destin MASAC-
clo result from a hierarchical specification madecoimponent$96, 100].
MASACCI0 supports both discrete and continuous time componentsdmat
be arbitrarily nested and composed via both parallel anilseperators.
Moreover, Masaccio offers support for assume-guarantee reasoning, a com-
pelling example of which is provided in [100].

4.5.1 MASACCIO Syntax

Hybrid systems in MsSAccI0 are built out ofcomponentshat are defined in
terms of interfaces (describing the syntactic structunel) @éxecutions (defin-
ing the semantics). Thaterfaceof a componen#d consists of:

e Afinite setV} of input variables.

e Afinite setVy of output variables.

e A dependency relatiork C Vi x V¢ between input/output vari-
ables.

2Actually, as discussed in Section 3.6, some latest reslitt& some kind of formal analysis also in
CHARON.
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e Afinite setlL 4 of interface locations. Locations are points through
which the control flow enters/exits the component.

For variables, the following condition must holdi N V§ = (). The state
of componentd is an assignment of values to the set of variablgs= V} U
V3. All variables in MasAcclo aretyped so assignment must be consistent
with variable types. The set of all possible state assignsnenthe variables
in V4 is denoted byV4].

The meaning of the dependency relation is the followinguams: < v,
then the value ofy depends without delay on the valuezofSpecifically, for
jumps, the value o after the discrete transition takes place, depends on the
value ofz also after the jump. For flows, the value of the derivagj\depends
instantaneously on the value ®f MASACCIO requires that the dependency
relation be acyclic in order to guarantee the existence mitioutput values
(for jumps) or curves (for flows). This condition may seem testrictive,
since input/output values or curves can exist also if sonetiacglependency
exists, but has the obvious advantage of avoiding expefigizd-point cal-
culations. This eliminates some of the potential sourcesoofdeterminism
in the behavior of the hybrid systems.

For each locatior: € L4, the interface specifies jamp entry condi-
tion W/ (a) and aflow entry condition®//" (a). The component can be
entered through a given (jump or flow) location if the cormsting entry
condition is satisfied by the current I/O state. Control cahtbe component
at any location. Typically, exit points are locations withsatisfiable entry
conditions. Therefore, we see that, unlikeiARON, which separates entry
from exit locations, in MASACCIO0 there is no syntactical distinction between
entry and exit points of the component.

4.5.2 MASACCIO Semantics

The semantics of MsSAccIo s specified in terms of behaviors of single com-
ponents. Given a generic componehits behavior is defined by a séty of
finite executions. Infinite executions in finite time, i.eend behaviors, are
not allowed in MASAccCl0. Zeno behaviors have been thoroughly addressed
in [95], and conditions are available for hybrid systemg gravent Zeno be-
havior. The user should verify whether one of these conubtiapply for the
description that he/she describes im&hccio.
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An executionis a tuple of the form:

® (a,w,b)
* (a,w)

wherea € L4 is an entry location)p € L4 is an exit location andv
is a sequence of execution steps, i.e. either flows or jungpdescribed be-
low. The locationa is called theorigin of the execution} (if present) is the
destination while w is called thetrace

A jumpis a pair(p,q) € [Va] x [Va] of /O states; statg is called the
sourceof the jump, whileq is called thesink A flow is a pair(, f), where
J is a non-negative number anfd: R — [V4] is a function differentiable
on the closed intervdD, ¢]. The quantitys is called theduration of the flow,
while f£(0) is the source angf(0) is the sink. Intuitively f(¢) describes the
state trajectory for the whole duration of the flow. For cetesicy, the sink
state of a step must be the same as the source state of theirfigilstep in
the sequence.

Atomic components (discrete or continuous) contain onky origin and
destination. Traces can only be single jumps for discretepoments or sin-
gle flows for continuous components. For discrete companéné allowed
jumps are defined in terms of@mp predicatewhich constrains the values of
I/O states before and after a jump. Usually, such constrairg expressed in
terms of difference equations. For continuous componémsallowed flows
are determined by low predicate usually defined by differential equations
on I/O signals; clearly the causality property must hold: i the vector of
input signals ang is the vector of outputs, then< y.

The semantics of MsSAcclI0 is made complete with the interpretation of
jump or flowentry conditionsas explained in the previous section. We recall
that executions can start only if the corresponding entndimn is satisfied,
and they terminate when there is no entry condition whichbmagsatisfied.

Generic components are defined by nested compositions miatmm-
ponents. MASACCIO supports two basic composition operators: parallel com-
position and serial composition.

Parallel Composition. Given two componentd and B their parallel com-
position is denoted byl || B. The corresponding execution starts at a common
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location inL 4 N L, and it is synchronous for both components: every jump
in A takes place at exactly the same time of a corresponding jomiy and
similarly flows in A are matched by flows i3 having the same duration.
MASACCI0 supports preemption: when one of the two components reaches
an exit location, the execution of the other component iedaind the control
flow exits fromA || B.

Serial Composition. Serial composition represents sequencing of behav-
iors. GivenA andB, their serial composition is denoted Hy+- B. Executions

of A+ B are either executions of or B. The set of control flow locations is
the union of those of the two individual components, L.g.p = Lo U Lp.
Also the set of variables is the union of the sub-componewasiables:
Varp = Va4 U Vp. The triple (a,w,b) is an execution ofd + B if and
only if either (a, w[A], b) is an execution ofl or (a,w[B], b) is an execution

of B.

In addition to the above operations, inldAcclOitis possible to re-assign
variables names in order to enable the sharing of informatimong the dif-
ferent components. Variables having the same names retfeg game signal.
MASACCIO also supports variable hiding and location hiding to previde
language with the property a@hcapsulation However, in order to prevent
deadlocks, locations can be hidden only if their correspunentry condition
is satisfied so that the control flow can never halt at thosatimes. Hidden
variables have local scope, meaning that their values airgtigized each
time the control flow enters into the corresponding companen

Assume-Guarantee. MASAcCCIO supports the techniqgue of assume-
guarantee reasoning. For this, we need to discuseeflmement relationship
and thecompositionality propertiesf the model.

Intuitively, if componentA refines componeni3, we can think ofA as
being “more specific” tharB; from the point of view of observational se-
mantics, all the traces of are also traces dB (the converse is in general not
true). From an operational point of view componehnimay result fromB by
adding some constraints on it, e4)= B || C for some other component.
Formally, componen# refines componenB if the following conditions are
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satisfied:

(1) every input (output) variable of is an input (output) variable of
B and the dependency relation Bfis a subset of the dependency
relation of A. In symbols:<pC<4.

(2) every execution ofa,w,b) € E4 is such thata, w[B],b) € Ep,
that is every execution ofl is an execution o3 provided traces
are restricted to only variables belongingRo

Compositionality means that the operators are monotoitétive to the
refinement relationship. In other words, Af refines B then A || C refines
B|| C (for a generic componeiit), A+ C refinesB + C and the application
of the variable renaming and variable/location hiding epais does not alter
the refinement relation between componefitand B.

Under these and other assumptions on the scope of the eIl SAC-
ClO supports the assume-guarantee principle. Intuitivelg @en separately
verify the correctness of each componén(i.e., thatA refines its specifica-
tion), assuming that the rest of the components of the sybdmave accord-
ing to their specification. Then, the correctness of the ammepts implies
the correctness of the whole system (for details see [1@3])using this
technique, a large verification problem can be decompogedriany smaller
verification problems, which are typically much easier ttvspas the com-
plexity of verification grows more than linearly (often exgmtially) in the
size of the system. The approach, however, can only be dpphider certain
conditions. We refer the reader to the literature for motaitie[100].

4.5.3 Discussion

MAsAcclo is a formalism that is intended to study the theoretical io#pl
tions of certain verification techniques, and thereforesdoet provide any
practical support for the implementation of the models ardtlfieir verifi-
cation. For this reason, we were unable to implement the phaain this
case. The strength of MsAccio lies in its formal definition of the semantic
domain, which makes it an ideal denotational framework teetig tech-
niques for the analysis of hybrid systems. In particulag,aesume-guarantee
and other compositional techniques are required, togettieabstraction, to
address the complexity of verification in hybrid systems.
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4.6 CheckMate

CHECKMATE is ahybrid system verification toolbox fdiATLAB that has
been developed at Carnegie Mellon University. This sect@news how
modeling and verification of hybrid systems is performechis environment
and is based on [153].

CHECKMATE supports simulation and verification of a particular class
of hybrid dynamic systems callethreshold event-driven hybrid systems
(TEDHS) [95]. A verification procedure for these systems \pasposed
in [50]. In a TEDHS, the changes in the discrete state canramaly when
continuous state variables encounter specified thresholdgsholds in the
TEDHS model are hyperplanes. In the language of the gengaidhsystem
model presented in Section 2.1, guards and invariants regarlifunction of
states and are complementary, i.e., when invariants asatisfied, an appro-
priate guard must be satisfied. This guarantees that whesy#tem has to
jump because the invariant is not satisfied at a given staeg is a transition
that it can take and, therefore, the behavior is non blocking

Hybrid system models in EECKMATE have continuous dynamics de-
scribed by standard differential state equations (possibhlinear), planar
switching surfaces, and discrete dynamics modeled by fitéiie machines.
The key theoretical concepts used iIRECKMATE are described in [49].

4.6.1 CHECKMATE Syntax

A very interesting feature of @ECKMATE is the use of standard industrial
tools to enter the description of hybrid systemsiECKMATE models are
constructed using custom and standard B INK and STATEFLOW blocks.
The continuous state equations, parameters and specifisgthe properties
to be verified) are entered using thevBLINK GUI and user-defined r-
LAB m-files. Specifications express properties of trajectorfedbe CHECK-
MATE model. The GiEECKM ATE verification function determines if the given
specifications are true for all trajectories starting froposyhedral set of ini-
tial continuous states. Note that the semantics of the desigst be the one
understood by BECKMATE. For this reason, the tool uses thyntaxof the
SIMULINK environment but restricts its semantics so that a formalaguh
can be used.
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CHECKMATE models are built with the IBULINK GUI using two cus-
tomized SMULINK blocks along with several ofi8ULINK standard blocks.
To build the model from scratch, the user must enter the cammeanecw
at the MATLAB command prompt. This will open theHECKMATE library
from which the user can construct the system model. Cuyethit set of
blocks used in BECKMATE are:

(1)

()

®)

Switched Continuous System Block (SC3IBE custom SCSB
represents a continuous dynamic system with state equatien
f(z,0), whereo is a discrete-valued input vector to the SCSB and
the continuous state vectoris the block’s output. Currently, three
types of dynamics can be specified in an SCSB for each value of
the input vectoro: clock dynamicsi = ¢, wherec is a constant
vector, linear dynamics = Az + b, where A is a constant ma-
trix and b is a constant vector, and nonlinear dynamics: f(x).
The switching function is an-file that provides the information
about the dynamics of the system. The variablselects which
dynamics should be used.

Polyhedral Threshold Block (PTHBThe other custom block in
CHECKMATE is the PTHB, which represents a polyhedral region
Cx < d in the continuous space of the continuous-valued input
vectorx. The PTHB output is a binary signal indicating whether

is inside the region or not, i.e. whether or not the condition< d

is true. The initial condition, the analysis region, and ititernal
region hyperplane are definediasearcon object.

Finite State Machine Block (FSMBDiscrete dynamics are mod-
eled using a FSMB. FSMBs are regularASeFLow blocks that
conform to the following restrictions:

e no hierarchy is allowed in the18TEFLOW diagram;

e data inputs must be Boolean functions of PTHB and
FSMB outputs only;

e event inputs must be Boolean functions of PTHB outputs
only, i.e. events can only be generated by the continuous
trajectory leaving or entering the polyhedral regions;

¢ only one data output is allowed,;
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e every state in the ®TEFLOW diagram is required to have
an entry action that sets the data output to a unique value
for that state;

e no action other than the entry action discussed above is
allowed in the SATEFLOW diagram.

Some of these restrictions are rather severe from an easseof
point of view. For example, hierarchy is a much used featdire o
STATEFLOW. Barring its use may force the designer to enter an
unwieldy number of states. Eventinputs are in general usespt
resent disturbances as well as control. Restricting eventpre-
sent jumps due to the evolution of the continuous state mainag
create inconveniences to the user. The other restrictimmmade

to guarantee deterministic execution of the hybrid automat

There are some parameters the user must enter in order t€g&eK-
MATE all the necessary details about the verification processsd parame-
ters, as well as any variables used in th& & INK /STATEFLOW front-end
model, are defined and stored in theaMAB workspace. Parameters and
variables can be defined manually or through the use sfuMB m-files.

4.6.2 CHECKMATE Semantics

A threshold-event-driven hybrid system is a combinatiom sWitched con-
tinuous system (SCS) threshold event generator (TEGInd afinite state
machine (FSM)The SCS takes the discrete-valued inpwnd produces its
continuous state vectaras the output. The continuous dynamicsi#@volve
according to the differential equations or differentiatlirsions selected by
the discrete inputr. The output of the SCS is fed into the TEG, which pro-
duces an event when a component of the vegtorosses a corresponding
threshold from the specified direction (rising, falling,bmth). The event sig-
nals from the TEG drive the discrete transitions in the FSMyséoutput, in
turn, drives the continuous dynamics of the SCS.

CHECKMATE converts the TEDHS into polyhedral invariant hybrid au-
tomaton (PIHA) PIHA are a subclass of hybrid automata as presented in [95].
Recalling the definitions in Section 2.1, each discreteestathe hybrid au-
tomaton is called a location. Associated with each locasa@n invariant, the
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condition which the continuous state must satisfy whilefhtylerid automaton

resides in that location, and the flow equation represemitiegontinuous dy-

namics in that location. Transitions between locationscalied edges. Each
edge is labeled with guard and reset conditions on the aomis state. The
edge is enabled when the guard condition is satisfied. Upplotation tran-

sition, the values of the continuous state before and dftetransition must
satisfy the reset condition. In general, the analysis ofidydutomata can be
very difficult. In CHECKMATE, the attention is restricted to PIHA. A PIHA
is a hybrid automaton with the following restrictions:

e the continuous dynamics for each location is governed bydin o
nary differential equation (ODE);

e each guard condition is a linear inequality (a hyperplarerdjy

e each reset condition is an identity;

e for the hybrid automaton to remain in any location, all gueod-
ditions must be false. This restriction implies that theaiant
condition for any location is the convex polyhedron defingdhe
conjunction of the complements of the guards. This is thgimri
of the name polyhedral-invariant hybrid automaton.

These restrictions are needed to simplify the formal vextitn task and
to allow the simulation of the hybrid system inM&JLINK /STATEFLOW, but
they certainly reduce the application range.

Formal Verification. In CHECKMATE, formal verification is performed by
computing the set of states that are reachable given thal icginditions. De-
riving the set of reachable states is computationally verg leven for linear
time-invariant continuous-time systems. Hence there isoag incentive for
approximating the problem in a way that makes it computatigrieasible. In
CHECKMATE, formal verification is performed using finite-state appnoe-
tions known in the literature aguotient transition systenj$25]. A quotient
transition system (QTS) is a finite state transition systeat is a conserva-
tive approximation of the hybrid system. The states of a Q@i®espond to
the elements of a partition of the state space of the hybistesy. There is
a transition between two staté$ and P, of the QTS if and only if there is
a transition between two statgs € P, andp, € P; in the original hybrid
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system. Thus, for every trajectory in the original hybridteyn there is a cor-
responding trajectory in the QTS. However, the conversetitroe, i.e., there
may be trajectories in the QTS that do not correspond to ajgctory in the

original hybrid system. The approximation is conservativéhe sense that
it captures all possible behaviors of the hybrid system, po&sibly more.

Therefore, if all trajectories in the QTS satisfy some propahen we can

conclude that all trajectories in the hybrid system alssfathe same prop-
erty. If a negative result is found (the property is not vedji the verification

of the original hybrid system is inconclusive and the useiven the option

to refine the current approximation and attempt the veriGosagain.

CHECKMATE only pays attention to the behavior of the hybrid system at
the switching instants. Thus HECKMATE approximates the QTS for the hy-
brid system from the partition of the switching surfacesichtare the bound-
aries of the location invariants in the PIHA, and the set @fahcontinuous
states.

The verification method in the QTS is based on reachabiligheis and,
therefore, requires a very expensive computation for naotiis-time dynam-
ical systems. To reduce the computational complexity, lrebitity analysis
is not performed on the original system, but using an appraiion method
calledflow-pipe approximatiof50]. The flow-pipe approximation is used to
define transitions in the quotient transition system forRhidA as follows.

A state in the quotient transition system is a triptep, ¢) wherer is a poly-
tope in location(p, ¢) of the PIHA. For each state in the quotient transition
system, the flow pipe is computed for the associated polytouker the as-
sociated continuous dynamics. The mapping set, i.e. thef states on the
invariant boundary that can be reached fremis computed. A transition is
then defined from(r, p, ¢) to any other state whose polytope overlaps with
the mapping fromwr. CHECKMATE then performs model checking on this
transition system to obtain a verification result for theiggsspecification.

If the verification returns a positive result, then the pesgrinforms the user
and terminates. If a negative result is returned, then tkeisgyiven the op-
tion of quitting or allowing GIECKMATE to refine the approximation and
repeating the verification. This process continues untbsitive verification
result is obtained, or the user decides to quit.
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Fig. 4.6 Checkmate model of the three-mass system

4.6.3 Examples

The three-mass system has no inputs and is characterizedebyetstate
variables: vertical positions, vertical velocities, lzomtal positions and hor-
izontal velocities. The block diagram for the three-massteay is shown in
Figure 4.6. The switched continuous system, the PTHB blacid the fi-
nite state machine are provided asiECKMATE block-set in SMULINK . A
PTHB block has @olyhedron parameter that must be set to a variable defined
in the MATLAB workspace. Such a variable is defined by calling the function
linearcon(CE,dE,Cl,dl) provided with the GIECKM ATE package. Thénearcon
function generates a data structure that represents thélgetar constraints
CFE = dFE andC1 < dI. The output of a PTHB block is equal to zero when
such constraints are violated and equal to one when theyatisfied.

Figure 4.6-b shows the state machines that representsstretdi part of
the model. Arcs are labeled by events that are generatecaaitling edge of
the output of PHTB blocks. Each state is encoded with an @nt&yhen the
discrete automaton enters a state, it outputs the integecdihresponds to that
state. The state number is used by the SCSB that is linked tata A8 func-
tion. Depending on the state, theAvLAB function selects a corresponding
dynamical system and a set of reset maps.

The simulation results are shown in Figure 4.7. The critczde when
x30 = L cannot be correctly simulated byhECKMATE. The figure also



4.6. CheckMate 127

Fig. 4.7 GHECKMATE simulation results of the three-mass system.

show the sequence of events that happen during the simul&ientm?2 f,
which indicates thatns starts falling, becomes enabled before everstf
which indicates thatn starts falling. The reason is that in order fars; to be
greater than zero, one integration step is required whitydehe enabling
of m3f. This kind of situation makes simulation inadequate for @haly-
sis of hybrid systems and this is why model checkers likECKMATE are
essential tools for researchers in the hybrid system corityaun

The Full Wave Rectifier Example. Figure 4.8 shows a model of the full-
wave rectifier in GECKMATE. The structure is obviously identical to the
three-mass system HECKMATE does not allow a dynamical system to have
an external input (only the discrete input from the state mirecis allowed).
The sinusoidal voltage source has to be internally genditayethe SCSB.

If we want to keep the system linear we can use a second ordetieq
d?vi, /dt = —wovi, to generate the input voltage. Simulation results are
shown in Figure 4.9. Algebraic loops are avoided by consttaén CHECK-
MATE. In fact, only systems of the form = f(x, u) can be described.
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Fig. 4.8 Checkmate model of the full-wave rectifier.
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Fig. 4.9 GHECKMATE simulation results of the full wave rectifier.

4.6.4 Discussion

CHECKMATE has several interesting aspects. First of all, it uses apapy-
lar tool suite to capture the design specifications and tailsita the system.
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Second, it uses a particular restriction of the generalitys®ystem model
presented in Section 2.1 that allows carrying out formaifieation. Third,

it uses conservative approximations to reduce the compntabsts of for-
mal verification for hybrid systems. From a practical viewpothe approxi-
mation scheme yields computational problems that remaihibpitive when
the number of variables is more than five (due to the high cbseach-
ability analysis). A GiIECKMATE model implements a hybrid system as a
differential equationt = f(x,u) with one discrete input: coming from

a Moore-type state machine (implemented by ®1&FLOwW chart). With
CHECKMATE it is possible to specify dynamics that are more complex than
the ones allowed by MTECH. On the other hand, HTECH provides a set of
language features for the composition of hybrid automataperation which

is not possible in @ECKMATE.

It was not possible to verify our models usingiEcKMATE due to execu-
tion errors. We think that the errors arise from an inconijiétyf between the
current version of MTLAB and the version upon whichHECKMATE was
originally developed. Unfortunately KECKMATE is no longer supported
and, therefore, it hasn’t been possible to ask for an updagesion.

4.7 Ellipsoidal Calculus for Reachability

In recent years various researchers in the control comminave inves-
tigated ellipsoids as a tool to compute approximations aftiooous sets.
S. Veres has developed the&eGMETRIC BOUNDING TOOLBOX - currently
available in the release GBT 7.3 [172] - as aMAB toolbox that supports
numerical computations with polytopes and ellipsoids m+thdimensional
Euclidean space fot > 1. The toolbox includes procedures for convex hull
determination (both vertex enumeration and facet enutioejapolytope ad-
dition and difference in the Minkowski sendgdntersections, hyper-volumes,
surface-areas, orthogonal projections. affine transfooms The operations
available for ellipsoids include: smallest volume elligscovering a poly-
tope, interior and exterior approximations to the, differe and intersection
of ellipsoids.

3Given the convex and compact s&fsandY in R™, the Minkowski sum is the set +Y = UrexUyey
{x + y}, wherez + y is the vector sum of points andy; similarly, the Minkowski difference is the set
X —Y =Nyey Uzex {z — y}, wherez — y is the vector sum of points and —y.
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The most systematic contributions to ellipsoidal calcditusepresenting
reached sets are due to the research group of A.B. Kurzhamskive both
in Moscow and at UC Berkeley (with P. Varaiya). In a long semaeof pa-
pers [114, 116, 115, 119, 117, 118, 120], A.B. Kurzhanskig BnVaraiya
developed techniques for approximating the reached setgrafmical sys-
tems. They addressed the general problem: given the diffateequation
#(t) = f(z(t),u(t),v(t)), =(0) € Xy, wherez(t) € R" is the state,
u(t) € U is the control,u(t) € V is the disturbance, and is the set of
initial states, calculate (an approximation of) the settafes X (¢, X)) that
can be reached at timeby choosing an appropriate control, whatever is the
disturbance. In particular they studied how to approxinih&ereached sets
externally and internally by ellipsoids and developed dpsdidal calculus.

A collection of MATLAB procedures to support the ellipsoidal calculus
has been made available recently by A.A. Kurzhanski as thePSOIDAL
TooLBoOX [123]. It implements the core procedures of ellipsoidalcaal
lus and its application to the reachability analysis of cwrus-time and
discrete-time linear systems, and linear systems withidiances. The main
advantages of ellipsoidal representations are:

e their complexity grows quadratically with the dimensionthé
state space and remains constant with the number of tims; step

e it is possible to converge exactly to the reached set of ailine
system through external and internal ellipsoids.

[ ]

A couple of recent papers [122, 121] extended the analydigliad sys-
tems under piecewise open-loop controls restricted by batohds, where
the system equations may be reset when crossing some goattus state
space, and so there is an interplay between continuous dgs@overning
the motion between the guards and discrete transitionsnligiag the resets.
They address the verification problem of intersecting oiding a target set
at a given time or at some time within a given time intervald gmopose
computational strategies based on the ellipsoidal cadculu

Ellipsoidal calculus was applied inBRISHIFT, a package for safety
verification of systems modeled by hybrid automata, dewslopy O.
Botchkarev and S. Tripakis [41]. The authors worked out ahehility pro-
cedure for systems of hybrid automata with linear dynaméspressed as
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differential inclusions of the forni € Az + U; reachability analysis is per-
formed for a bounded timé supplied as a parameter by the user. The al-
gorithm over-approximates: (1) intersections, uniongdr transformations
and geometric sums of convex sets; (2) the reachable setio¢ar Idiffer-
ential inclusion over time. It deploys new methods for oapproximating
the unions of ellipsoids and intersections of ellipsoidd polyhedra. \ER-
ISHIFT accepts systems of hybrid automata communicatingytioutpur
variables and synchronous message passing and suppoasmidycreation
and reconfiguration of automata.

An improved version of Botchkarev's algorithm has been @nésd
in [46], by avoiding in the reachability computation the sppmations
caused by the union operation in the discretized flow tubienaibn. There-
fore, the new algorithm may classify correctly as unreatshatates that are
reachable according to the original version of Botchkaalgorithm, due
to the loose over-approximations introduced by the uniograton. The re-
vised reachability algorithm was implemented inside”RVSHIFT and tested
successfully on a real-life case study modeling a hybridehotla controlled
car engine. Some new theoretical results on terminatioesificted classes
of automata were also providet.

An open research problem is how to integrate representabased on
ellipsoids with those based on polyhedra to achieve theeigipproximation
of a given set. A step in this direction has been recentlyrtaki¢h the ARrI-
ADNE project [29]. ARIADNE provides an environment in which algorithms
for computing with hybrid automata can be developed basectpresenta-
tions of sets as unions of ellipsoids as well as unions of ikishaonotopes,
simplices and polyhedra. ®ADNEdiffers from other tools in that it uses a
rigorous theory of computable analysis [173, 54] to spezipund semantics
for representations and computations involving pointts, seaps and vector
fields. Using this semantics, optimal provably correcteoamunds can be ob-
tained. Currently the geometry module, providing variogsresentations of
sets, has been completed, and work is in progress on theagealumodule,
providing algorithms for evaluating functions on sets amegrating vector
fields. Interfaces to these kernel modules are availabtigtr FrTHON and

4The modified version of ¥RISHIFT and the used test cases are available at
http://fsv.dimi.uniud.it/papers/improving _EC2004.
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MATLAB, allowing scripts for safety verification by reachabilityedysis to

be written. The ARIADNE package will soon be released as an open source
distribution, so that different research groups may cbuate new data struc-
tures, algorithms and heuristics.

4.8 d/dt

d/dt is a tool for the reachability analysis of continuous andrtd/bystems
with linear differential inclusions developed at Verim&3|[ 24, 56]. Design-
ers can usé/dt to solve the following problems:

e reachability: given an initial sett” of states, compute an over ap-
proximation of the set of all the states reachable by theesyst
from F.

e safety verification: given a set) of bad states, check whether the
system can reacf.

e safety switching controller synthesis given a safety property
specified as a sét of safe states, synthesize a switching controller
so that the controlled system always remains inside thessafe
by computing an under approximation of theaximal invariant
set

The algorithms implemented wirdt are discussed in detail in [21, 22, 56].

4.8.1 d/dt Syntax

The input tod/dt is a hybrid automaton where:

e continuous dynamics atmear with uncertain, bounded inpdie-
fined by a differential equation of the forffix) = Ax + Bu,
whereu is an input taking values in a bounded convex polyhedron
U.

e all the invariants and transition guards are defined by copody-
hedra which are specified as conjunctions of linear inetiesli

¢ theresetsassociated with discrete transitions afne, set-valued
mapsof the formR(x) = Dx + J whereD is a matrix and/ is a
convex polyhedron.
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Besides the hybrid automaton, the users/oft provide as input a safety
specification and, optionally, some approximation paransesuch as the
time step or the granularity of the orthogonal approximaior hend/dt can
process the input data in one of the three different modegiome above:
reachability, safety verification, and controller synike$he safety specifica-
tion is typically expressed as the g2bf bad states that should not be reached
by the system under any possible evolution. The safety gatifin algorithm
relies on forward reachability analysis to compute the -@mgroximationC'
of the reachable set. After checking whethgintersects with), d/dt outputs
either the confirmation that the system is safe or a set of taddssthat the
system has reached.

4.8.2 d/dt Semantics

Under the continuous dynamics of the forifx) = Ax + Bu, the time suc-
cessors of a reachable set usually faunved objectshat in general cannot
be computed exactly [24, 125]/dt relies on a conservative approximation
based on polyhedral approximation and an extension of ricatémtegration
from point-to-polyhedral sets:

(1) given a time stepr and an initial polyhedron?’, the tool com-
putes another polyhedrafi that approximates the sé} of states
reachable fron¥ during the time intervalkr, (k + 1)r];

(2) reachable sets are represented by non-convex orthiogolyae-
dra [42] because the accumulation of reachable statesatiypic
forms a highly non-convex set.

Although the same research group has presented a methodrigout-
ing these approximations for an arbitrary differential dtion f(x) in [57],
d/dt only handles linear continuous dynamics. For systems wattitiicu-
ous dynamics of the forny(x) = Ax, i.e. without input disturbances,
the set of reachable statds is approximated by the convex hull =
conv(F U F,.), which is first enlarged by an appropriate amount to en-
sure over-approximation and then approximated by a nowmesowrthog-
onal polyhedron [24]. For systems with continuous dynanaitshe form
f(x) = Ax+ Bu, i.e. with uncertain bounded input disturbancEsijs com-
puted by simulating the evolution of the facesfof This is done by relying
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on themaximum principldrom optimal control to find the inputs that cover
all possible reachable states [22, 171].

Switching Controller Synthesis Algorithm. d/dt can also be used to syn-
thesize a controller that switches the system betweenrmanis modes to
avoid some states that belong to a §ebf bad states specified as an input
by the users. The synthesis process is based on the demiatihe maxi-
mal invariant seti.e. the set of states from which the controller by switghin
properly can avoid to enter into any element(afin fact, d/dt relies on the
computation of an under-approximation of the maximal irasrset which
is obtained through the application of the reachabilityhteques for hybrid
automata and the use of tbee-step predecessoperatorr: given a setF

of safe states, the set of state® is derived by iteratively removing fror#

all those states that will leavg after no more than one switching, until con-
vergence [21, 22, 56]. Then, from the maximal invariant g&tt derives the
switching control laws that restrict the invariants anch&iion guards of the
original hybrid automaton so that the resulting automat@ets the desired
safety specification.

4.8.3 Example

The full-wave rectifier example is modeled as a dynamicaesywith three
states:

dimension 3;

constants

R = 1000,

C =0.0001,

Rf=0.1,

w0 = 314.16,

epsilon = 0.01;

initloc: 2;

initset:

type rectangle
-0.01272 -0.01274,
-0.00001 0.00001,
3.99999 4.00001;

badset:
loc_id: 2 /* offoff */
type convexconstr

0.00.01.03.5;



location : O; /*onoff*/
matrixA :
0.01.00.0,
[-w0*w0] 0.0 0.0,
0.0[1.0/(Rf*C)][-(1.0/(R*C)+1.0/(Rf*C))];
scalB: 0.0;
inputset: ;
stayset
type convexconstr
0.0-1.01.00.0, /*vin - vi>= 0%/
0.0-1.0-1.00.0; /* -vin - vik= 0*/
transition:
label nfff: /* onoff — > offoff */
if in guard :
type convexconstr
0.01.0-1.0 [ epsilon ]; /* vin - vikk= 0*/
goto 2;
label nffn: /* onoff — > offon*/
if in guard :
type convexconstr
0.01.0-1.0[epsilon], /* vin - vk= 0%/
0.0 1.0 1.0 [ epsilon ]; /*-vin - vi>= 0*/
goto1;
location: 1; /*offon*/
matrixA :
0.01.00,

[-w0*w0] 0.0 0.0,

0.0[-1.0/(Rf*C)][-(1.0/(R*C)+1.0/(Rf*C))]:

scalB: 0.0;
inputset; ;
stayset
type convexconstr
0.01.0-1.00.0, /*vin - vk= 0*/
0.01.01.00.0; /*-vin-vi>=0*
transition :
label fnff; /*offon — > offoff*/
ifin guard :
type convexconstr
0.01.0-1.00.0, /*vin - vk= 0*/
0.0-1.0-1.0 0.0;/*-vin - vic= 0%/
goto 2;
label fnnf; /*offon — > onoff*/
ifin guard :
type convexconstr
0.0-1.01.00.0, /*vin -vb>= 0*/
0.0-1.0-1.0 0.0; /*-vin -vic= 0%/
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goto O;
location: 2; /*offoff*/
matrixA :
0.01.00,
[-w0*w0] 0.0 0.0,
0.0 0.0 [-1.0/(R*C)];
scalB: 0.0;
inputset: ;
stayset
type convexconstr
0.01.0-1.00.0, /*vin - vk= 0*/
0.0-1.0-1.0 0.0; /*-vin - vik= 0*/
transition :
label fffn: /*offoff — > offon*/
ifin guard :
type convexconstr
0.01.01.00.0; /*-vin -vi>= 0*/
goto1;
label ffinf: /*offoff to onoff*/
ifin guard :
type convexconstr
0.0-1.01.00.0; /*vin - vi>= 0*/
goto O;

iimits:

x[0] <=10.0 and

x[0] >=-10.0 and

x[1] <=10.0 and

x[1] >=-10.0 and

x[2] <=10.0 and

x[2] >=-10.0

We wish to verify that the output voltage does not drop beldw’. This

condition is described by thedset, which lists a set of regions that are con-
sidered unsafe. In our case, the region is characterizeddagibon2 where
both diodes are off and the output voltage is less thaw. The rest of the
code describes the hybrid automaton with three states.dn leaation the
invariant is declared as a set of convex constraints on #te gariables while
the dynamics is specified as= Ax+ Bu whereu is an external disturbance.
Each location includes a list of its output transitions wagsards conditions
are specified as convex regions. A parameter file is assddiate hybrid
system model in order to tune the verification algorithm ®shecific model
and improve the verification efficiency.
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Unfortunately,d/dt has problems in computing the over-approximation
because of the marginally stable set of equations. As inabe of PHA\ER,
we could use the same method and confine the input voltage éctagon
by adding states. Sina#/dt does not support composition, we would have
to write explicitly the cross product of the input voltageusme described
in PHAVER and the circuit automaton. The composition would then have
twelve states.

4.8.4 Discussion

The features ofi/dt are certainly very interesting. In particular, the capapil
of using the results of formal verification to synthesize atoaler is quite

appealing in embedded system design. Its limitations andasito those of
other formal verification tools: limited expressivenessnplex ways of spec-
ifying dynamics and properties, and high computationatos

4.9 Hysdel

HYSDEL is a hybrid systems description language publicly distadiby the
Automatic Control Laboratory of the Swiss Federal Insétof Technology
Zurich [165, 166]. FrsDEL can be used to descriléscrete hybrid automata
(DHA). DHA result from the connection of a finite state maahiwhich pro-
vides the discrete part of the hybrid system, with a switchffithe system
(SAS), which provides the continuous part of the hybrid dgits. DHAS are
formulated in discrete-time and, therefore, Zeno behawviannot appear. The
Multi-Parametric Toolbox that is based orvBDEL allows users to describe
the hybrid dynamics in a textual form, perform reachabidibalysis and, ul-
timately, synthesize an optimpiecewise affine (PWA) controll§t57].

The HvysDEL compiler is available athttp:/control.ee.ethz.ch/ hy-
brid/hysdel. Additional related software in MrLAB is available at
http://www.dii.unisi.it/hybrid/tools.html

4.9.1 HYSDEL Syntax

A HYSDEL netlist has the following structure:

SYSTEM <name> {
[* C-style comments */
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INTERFACE {

}
IMPLEMENTATION  {
}

}

The interface section describes the following properties gystem:

e STATE, INPUT, OUTPUT: these denote the state variables, inputs
and outputs subsections, respectively. State, input atpdibvari-
ables are declared by the type speciffegAL for real-valued vari-
ables, oBooL for Boolean-valued variables) that is followed by
the variable name. For real variables an optional interval can be
specified by using the suffixin,max] to denote the minimum and
maximum value that the variable can assume, respectively.

e PARAMETER: In the parameter subsection, a parameter can be
specified in one of the following ways:

— BOOL name=value; where value is eitheTRUE or FALSE.
— REAL name=value; where value is a real number.

— REAL name; where the parameter is treated symbolically.

In the IMPLEMENTATION section, the user describes the behavior of the
hybrid system using mainly the following subsections:

e CONTINUOUS : it contains the description of the dynamics of an
affine discrete time dynamical system through equationyyue t
var = affine-expression wherevar is a discrete time variable.

e AD : it is used to define Boolean variables from continuous ones
using statements of typer = affine-expression <= real-number Of
var = affine-expression >= real-number. This section can be seen as
an analog to a digital converter.

e DA itis used to generate continuous variables from Boole&s on
using the following statementsar = IF boolean-expr THEN affine-
expr ; Or var = IF boolean-expr THEN affine-expr ELSE affine-expr.

A variable is assigned to an affine expression depending ®n th

5In the sequel we shall indicate Boolean signals withsabscript and real signals with arsubscript.
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value of the Boolean expression. Sampling could be one eleamp
of DA section where the Boolean expression is a clock signal.

e AUTOMATA : it specifies the state transition equations of the dis-
crete automata of the hybrid system through Boolean express
of the formvar = boolean-expression. A Boolean expression can use
logic operators like& (AND), | (OR) and~ (NOT).

e OUTPUT : it defines the output functions of the hybrid system
through static linear and logic relations.

e LOGIC: itis used to define internal Boolean variables.

e LINEAR : it is used to define real valued variables and algebraic
expressions over them.

e MUST: it describes constraints on continuous and Boolean vari-
ables through expressions of the formtolean-expression,
affine-expression >= affine-expression, Or
affine-expression <= affine-expression

4.9.2 HYSDEL Semantics

HyYSDEL systems semantics is defined in terms of discrete hybrichaaito
(DHA) (see Figure 4.10). The SAS block contains a set of discaffine
systems characterized by the following set of equations:

z. (k) = Az (k) + Bigyur (k) + fir) (4.1)
yr(k) = Cigyzr(k) + Digyur(k) + gir) (4.2)

wherez,.(k) = z,(k+1), z, C R™ is the continuous state vectar, C R™~

is the external inputy, C RPr is the continuous output vector and, fi-
nally, {A;), Bik)> Cik)» Dir) }iez are matrices of appropriate dimension.
Depending on the value &f indexi(k) selects a different set of matrices, and
hence a different affine system. This means tf¥at represents a mode of op-
eration characterized by different discrete dynamics. mbee is computed
by a logic function of the Boolean state and input variabéesgdescribed be-
low. The finite state machine, in turn, represents the hywikdmata whose
state transitions depend on the external Boolean inputhe previous state
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Fig. 4.10 Block diagram of a discrete hybrid automata.
and the Boolean variabl& (k),
zy(k) = fe(ap(k), up(k), oc(k)) (4.3)
yp(k) = gp(@p(k), up(k), e (K)) (4.4)

de (k) is true when some particular conditions on the continuousibkes are
satisfied. In particular:

0c(k) = fu(2r(k),ur(k), k)

d¢(k) is a vector of boolean variables and we use the supersdapdenote
the i-th component of the vector. In particular, time evearts modeled as
Si(k) =1 <= KkTs > to (WhereTy is the sampling time), and threshold
events are modeled &§k) = 1 <= a’z, (k) + bTu, (k) < c.

The mode selector is a logic functiotk) = fas(zp(k), up(k), de(k)). In
this setting, reset maps can be considered as special dymacting for a
one sampling step. During this step, variables are set tecfspvalue.

A HYSDEL program has a natural interpretation as a DHA. ThaITIN-
Uous sections are used to describe affine systems in the SAS bidek.
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AD sections are used to generatdk) while the DA sections are used to
switch among several affine systems depending on the vakaud Boolean
variables. Finally, th&UTOMATA section is used to describe the finite state
machine. The use dfINEAR sections could lead to the presence of alge-
braic loops. Algebraic loops are statically detected apdned by the Ks-
DEL compiler. Notice that the discrete nature of #dhEL program makes it
impossible to describe Zeno automata.

4.9.3 Examples

HysDEL only models discrete time dynamics with fixed sampling time.
Hence, testing event detection and exploiting Zeno exagsitis not possi-
ble, and we therefore do not present the example of the thess- system.
We model the full-wave rectifier and synthesize a contrdhet selects a
value of the capacitance to limit the output ripple.
SYSTEM RectifierRC{
INTERFACE {
STATE {
REAL vc[-10.0, 10.0];
BOOL onon, onoff, offon, offoff;}
INPUT {
REAL vin[—10.0,10.0]; }
PARAMETER {
REAL T =0.000001;
REAL Rf=0.1;
REAL R =1000;
REAL C=0.0001;}
} I* end interface */
IMPLEMENTATION {
AUX {
BOOL dlon,d2on;
REAL i1,i2; }
CONTINUOUS {
ve=vc—vexT/(R+xC)+ (il +i2)«T/C;
¥
AUTOMATA {
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onon = (onon & d1on & d2on) (onoff & dlon & d2on)| (offon &
dlon & d2on)| (offoff & dlon & d2on);
onoff = (onoff & d1on &~d2on)| (onon & d1on &~d2on)| (offoff
& dlon & ~d2on);
offon = (offon & ~d1on & d2on)| (onon &~d1on & d2on)| (offoff
& ~dlon & d2on);
offoff = (offoff & ~dlon & ~d2on)| (onoff & ~dlon & ~d2on)|
(offon & ~d1lon &~d2on)| (onon &~dlon &~d2on);

¥

AD{
dlon = vin — ve >= 0.0;
d2on = —vin — ve >= 0.0;

¥

DA{
i1 ={ IF (onon| onoff) THEN (vin-vc)/Rf ELSE 0.0};
i2 = { IF (onon| offon) THEN (-vin-vc)/Rf ELSE 0.0};

¥

} I* end implementation */

}

The HysDEL model has several stateg:is a continuous state representing
the output voltage whilenon, onoff, offon, offoff are discrete states representing
a one-hot encoding of the four states in Figure 2.4. Theraeésimputvin that
represents the external voltage source. GhRTINUOUS section implements
the time discretized version of the differential equation= —vc/(RC) +

(i1 4+ i2)/C, wherei; is the current flowing through diod&. Such current
depends on the voltage difference across the diode.

The AUTOMATA section implements the logic of the state machine in Fig-
ure 2.4 and uses two auxiliary boolean variables indicatiegregion of op-
eration of each diodes. Those variables are defined intle=ction. A diode
is on when the voltage across its pins is positive which ted@s into a linear
inequality in the variables of the model. Thba section computes the two
currentsi; andi, depending on the current state of the automaton.

After a model is described using theyBDEL language it can be com-
piled with the HrsDEL compiler in order to generate an input file for axM
LAB simulation (it is also possible to generate a mixed logigalasnical de-
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Fig. 4.11 HrspEL simulation result of the rectifier example

scription of the same system). TheaWLAB simulation file has the following
interface:

function [xn, d, z, y] = circuit(x, u, params)
It simulates one step starting from the initial conditianswith input «
and parameterparams. It returns the new staten, the outputy, and
some auxiliary variables used in the internal represamtadf a DHA. The

HYSDEL toolkit provides also a wrapper function with the followiiger-
face:

function [XX,DD,ZZ,YY] = hybsim(x0,UU,sys,params,Optis)
whereUU is an input vectorx0 is the initial condition,sys is the MAT-
LAB simulation file. Thenybsim function simulates the systemys for all
samples inJU. This is the reason why even if a system has no inputs it is

still necessary to have at least the time-line as input. &itin results are
shown in Figure 4.11.
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4.9.4 Controller Synthesis: the Multi-Parametric Toolbox

Optimal controller synthesis. In [32] the authors propose a framework for
modeling systems where physical laws, logic rules and caings are in-
terdependent. Models in the proposed formalism are denuteeld logical
dynamical(MLD) systems. An MLD description consists of a set of linear
dynamic equations subject to linear inequalities invajvieal and integer
variables. Using the MLD formulation, the authors give agoathm for the
synthesis of optimal control laws of a given discrete timbrig/system.

The proposed method to control hybrid systems is cdiledel Predic-
tive Controland it is based on theceding horizorphilosophy. At each given
time when a measurement of the system’s state is availabéxjuence of in-
put actions is computed based on the prediction of the figuwotution of the
system. Such a sequence is applied to the plant until a newurezaent is
available. At that time, a new sequence is computed. Comgpthie sequence
of control actions is equivalent to solving a mixed-integaadratic (MIQP)
or linear (MILP) problem (depending on the norm used in th&t éanction).
This technique requires the on-line solution of mixed-geteprograms, a task
that is typically very computationally intense. In [30] teeme authors pro-
pose a new method based on multi-parametric programmirigrtbees all
the computation off-line. Since the MLD representation leesn proved to be
equivalent to the piecewise affine (PWA) representatior), 88 describe the
optimal control problem formulation and the main resultsP&VA systems
as itis done in [31, 124].

Consider a PWA system of the form:

sk+1) =  Au(k)+ Bulk) + fi (4.5)
s.t. Lzl‘(k‘) + E,u(k) <W; (46)
if W) €D, iel 4.7)

wherex € R", v € R™, D; is a polyhedral set] is an index set and the
matrices are of suitable dimensions. Let’s denote Equdtidio Equation 4.7
with z(k + 1) = fpwa(z(k),u(k)). The constrained finite-time optimal
control problem can be formulated as follows:

UQ,--- UN—1

N-1
J(@(0)) = min  [|Qsz(N)|li + Y [|Rulk)|l + ||Q(k)[l;  (4.8)
k=0
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subject to
x(k+1) = fpwa(z(k),u(k))
2(N) € Xset

if /=2 thnQ=Q =0, Qr=Q}>0, R=R >0

Let X]{V be the N-step feasible set, i.e. the set of initial stai@s for which
the constrained finite-time optimal control problem is fbles Then the fol-
lowing theorem holds:

Theorem 1. Consider the constrained finite-time optimal control peoi)
Then, the set of feasible parameté«’ﬁ’ is convex and the optimizdry; :
X]{V — RN™ s continuous and piecewise affine, i.e.

Ux(z(0)) = F,z(0)+ G, if z(0)eP, = {xzeR"Hx<K,},
r = 1,.,R

The theorem says that the optimal controller generates @weseq of input
actions as an affine function of the plant’s state. The ctlatris indeed PWA.
This problem can be solved as a multi-parametric progranreuhe partition
X]{V = {P,}1_, is computed and for each partition the optinkalandG, is

given. The algorithms are implemented in axMAB toolbox called Multi-
Parametric toolbox [124].

The Multi-Parametric Toolbox. The multi-parametric toolbox (MPT) is
available for download atttp://control.ee.ethz.ch/ mpt/downloads/. It is shipped
together with a set of additional packages IBBD for polytope manipula-
tion and an FYsSDEL interface that reads an#$DEL specification and gener-
ates a M\TLAB structure that is used as internal representation by the. MPT
For the purpose of illustrating how the MPT works, we show haw
PWA model is described directly in MLAB. The system that we want to
control (the plant) is illustrated in Figure 4.12. The vgkav;, is a trian-
gular waveform. Depending on the value of the inputt is possible to
decide whether the load is connectedR9, 12> or disconnected from the
sources (we assume thRy and R are equal, and denote their value with
Ry). The system has three state variablesis the voltage across the load
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Fig. 4.12 The system under control (he®¢|C denotes the parallel connection of the load resistor and
capacitor).

which is the parallel connection of a resistor and a capgcitq is the in-
put voltage;s is a Boolean variable indicating if the input voltage has a
positive or a negative slope. The plant is specified asaalMB structure
sysStruct that lists the matricesl;, B;, C;, D;, the vectorsf; and g;, and
the bounds on the state and input variables. The polyhedtdb,smust be
specified for each dynamicand is described in additional fields of the same
data structure by the matricesardX;, guardU; and guardC; such that
guardX;x + guardU;u < guardC;. For instance, ifu = 0 then the state
update equations are:
(Ry + R)
R;RC
s(k+1) = s(k)

that are active in a polyhedral region defined respectively

ve(k+1) = v (k)1 -T ) + vin (k)

R;C

s=1ANvp, <1Au<0 if d>0,
s=0AN—-v <1Au<0 if d<O.

whered is the derivative of the input voltage.
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Parameter Meaning

probStruct.N Prediction horizon

probStruct.Q Weights on the states

probStruct.R Weights on the inputs
probStruct.norm 1 or Inf for linear problemp for quadratic problem

probStruct.subopt_lev Level of optimality, eithen, 1 or 2
probStruct. Tset A polytope describing the terminal s&t.,
Table 4.1 Parameters of the controller synthesis algorithm

The MATLAB structureprobStruct is used for setting up the synthesis prob-
lem aimed to automatically derive the controller. Tablede&cribes the most
important parameters that are storecpiobStruct. There are three possible
levels of optimality that can be specified:

e 0 seeks the cost-optimal solution that minimizes the costtfan
in Equation 4.8;

e 1 seeks a time-optimal solution where the controller pushes a
given state to an invariant set around the origin as fast asipo
ble;

e 2 is used for a low-complexity control scheme.

After the two MATLAB structuressysStruct and probStruct have been de-
fined, a controller can be synthesized with the command
ctrl = mpt_control(sysStruct,probStruct),
wherectrl is a MATLAB structure representing the synthesized controller.

The MPT offers a rich set of features for debugging and ogiimgi the
final result. It is possible to visualize the regions of theitegsized con-
troller with the commangblot(ctrl). Furthermore, a ®MULINK library is pro-
vided to instantiate and connect a plant and a controlletasec loop. The
SIMULINK blocks read the plant and controller structures from therM
LAB workspace and a simulation can be run to check if the coetrplér-
formances are as expected. In our case we want to synthesaetraller
that selects: in such a way that the state is close to the input peak volt-
age, which is equal to one. For this purpose, we set the plaptioy equal
to the statey, and set the parametgrobStruct.yref = 1 which means that the
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Fig. 4.13 Simulation of the closed loop system.

controller has to minimize the distance of the plant outpoitifthe reference
output. We also choos@obStruct.suboptlev = 0, probStruct.N = 2. The result-

ing controller, which hag7 regions, is shown in Figure 4.13 together with
the SMULINK model. The simulation trace was obtained using the command
mpt_plotTimeTrajectory(ctrl,x0,horizon,Options)

that simulates the closed loop system for a number of stegasfigul byhori-

zon starting fromz,. The resulting controller behaves like expected, i.e. it
rectifies the input voltage in order to minimize the errorhwiéspect to the

giveny,.. .

4.9.5 Discussion

HYSDEL is a language for the description of discrete hybrid autem&@he
language was developed targeting the modeling of distirete- affine dy-
namical systems. There are important features that arengisem the lan-
guage. First of all hierarchy: ¥5DEL programs are flat, i.e., it is not possible
to instantiate subsystems and compose them (not even thexssupports
it). Features like declaration, instantiation, hidingd abject-orientation are
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also missing. In fact, it is not possible to declare objeétsny sort and then
instantiate them to compose a system of more complex objects
The possibility of linking a FrSDEL description to a synthesis flow is a

unique feature. The MPT is in a very advanced stage of deneapand has
been used in industrial applications for synthesizing iadier and generating
code. It suffers from the intrinsic complexity of the syrglsealgorithm but
it provides a very powerful infrastructure for debuggingl grost-processing
synthesis results. Being embedded in theThiAB environment it provides a
user friendly and familiar interface.
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Comparative Summary

In this section we give a comparative summary of the desigragehes,
languages, and tools presented in this paper.

An important, and expected, conclusion of our analysisas tio single
tool covers all the needs of designers that use hybrid syaemodels to
solve their problems. While being able to capture the belanfithe system
under study in an intuitive and compact way and simulating @n impor-
tant feature for any design framework, formal analysis aymtresis tools
have a much higher potential in delivering a substantiadlpetivity gain and
error-free designs. These tools rely upon abstraction &mrchy to solve
industrial-strength problems. The choice of abstractevels and of decom-
positions into parts is not unique and it is rare that a desigan find the right
solution at the first try. Hence, interactive environmentsere simulation is
used to guide the selection of the appropriate abstracéindsiecompositions
are indispensable to advance the state of the art in therdas)verification
of hybrid systems.

To build this kind of environment, it is essential to providecommon
ground for the different tools to integrate. When modelsase&omplex as
hybrid systems, defining this common ground is by no meavisgiltri

Table 5.1 and Table 5.2 summarize the distinctive featuréseovarious
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Name Main Purpose

CHARON formal semantics for hierarchy, concurrency, refinement
CHECKMATE formal semantics (TEDHS) for simulation and verification
d/dt safety verification of hybrid systems with linear continalymamics
HSOLVER safety verification of hybrid systems

HYSDEL modeling of discrete-time affine dynamical systems
HYTECH modeling and verification of linear hybrid automata
HYVISuAL modeling and simulation of hybrid systems, hierarchy suppo
MASAccIO support for concurrent, sequential, and timed compositityn
MODELICA object-oriented modeling of heterogeneous physical syste
PHAVER safety verification of affine hybrid systems

Scicos modeling and simulation of hybrid systems

SHIFT modeling ofdynamicnetworks of hybrid automata

SIMULINK analysis and simulation, hierarchy support, model digzet
STATEFLOW FSM, statechart formalism, hierarchy support.

SYNDEX real-time code generation, distribution and scheduling

Table 5.1 Main purpose of the various languages, modelipgoaghes, and toolsets.

Name Nature Additional Features

CHARON modeling language simulator, type checker, interfacex J
CHECKMATE  verification toolbox integrated with WMrLAB SIMULINK /STATEFLOW
d/dt verification tool synthesis of safe switching controllers
HSOLVER verification tool accepts non-linear input constraints

HYSDEL modeling language generation of input fomM.AB simulation
HYTECH symbolic modele checker  support for parametric analysis

HyYViIsuAL visual modeler POLEMY ll-based block-diagram editor
MAsAcclo formal model enableassume-guarantee reasoning
MODELICA modeling language MDELICA standard library, commercial tools
PHAVER verification tool support for equivalence/refinement betabybrid automata
Scicos hybrid system toolbox C code generation, interfaceta BEx

SHIFT programming language C code generatigfBHIFT for real-time control
SIMULINK interactive tool MrTLAB -based, library of predefined blocks
STATEFLOW interactive tool chart animation, debugger

SYNDEX system-level CAD HW/SW codesign support, formal verifioati

Table 5.2 Nature and features of the various languages, Iing@pproaches, and toolsets.

modeling and design environments, programming languaj@silators and
tools for hybrid systems that we have discussed in the pus\sections.
Table 5.3 shows the approaches adopted by each languageott®l-m
ing the basic hybrid system structure. The first column shiogvs the dis-
crete automata are described in the respective languadeke Most of them
provide support to describe finite state machines, disgties cannot be
clearly distinguished in MULINK /STATEFLOW, MODELICA and SICOS
In SIMULINK /STATEFLOW the discrete automata can be described using a
STATEFLOW chart but it is also possible to useM®/LINK blocks to encode
state (as we did in the case of the full-wave rectifierpdLICA does not
define locations and transitions. It is up to the user to defiserete states
and derive a finite state machine using the statements thdaniguage pro-
vides. E1cosfollows an approach similar tol@ULINK as it offers a library
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Name Automata State-to- Supported Guards Invariants Reset Maps
Dynamics
Definition Mapping Dynamics
SIMULINK /STATEFLOW STATEFLOW and STATEFLOW out- No limitations Conditions Not supported Integrator’s reset
SIMULINK switches put selecting on STATE- from STATE-
state evolution FLOW inputs FLOW output

and  threshold
crossing detector

MODELICA Not explicitly de- Events enabling  No limitations Triggering Not an explicit Through

fined equations relations on language feature  reinit state-
variables (when ment
statement)

HyVIsuAL Explicit ~ finite Discrete-state re-  No restrictions Triggering con-  Not supported Assignment on
state  machine  finement ditions on state the FSM edges
representation variables

Scicos Not explicitly de- Events switching No restrictions Threshold detec- Threshold detec-  Reinitialization
fined dynamics tors tors of integrators’

state

SHIFT Textual — defini- Flows as loca- No Restrictions Conditions on  Conditions  on Assignment
tion of locations tions’ arguments system variables system variables statements
and transitions

CHARON Mode composi- Differential and No restrictions Enabling condi- Constraints on  Assignment
tions and refine-  algebraic  con- tions on system  system variables statements
ment straints  inside variables

modes

HYTECH Explicit declara- Flows defined in Convex predicate  Conjunction  of Convex predicate  Assignment
tion of locations each location over derivatives linear constraints ~ over state vari-  statements
and transitions of state variables ables

PHAVER Explicit declara- Flows defined in Affine Conjunction  of Convex predicate  Assignment
tion of locations each location linear constraints ~ over state vari-  statements
and transitions ables

HSOLVER Declaration  of Flows defined in General linear  General con-  General con-  Assignment
modes and jump  each mode and non-linear  straints straints statements
constraints constraints

CHECKMATE STATEFLOW Mode selector  Linear or non- Affine inequali- Not supported Affine maps

from STATE- linear (simu- ties
FLOW to a set of lation only or
dynamics approximation to

linear dynamics)

d/dt Explicit declara- Flows defined in Linear Convex polyhe-  Convex polyhe- Not  supported
tion of locations each location dra dra in the version
and transitions shipped to us

HYSDEL Logic formulas Mode selectors Discrete  Time Threshold condi-  Not supported Modeled as one
on Boolean and Linear tions on system step dynamics
variables variables

Table 5.3 Comparing the modeling approaches: modelingdkie hybrid system structure.

of components that can be interconnected to build a hybstesy. Further,
in Scicosit is not easy to provide guidelines for building state maekiin
a way that can be easily reverse engineered.

Another basic feature is the association of a dynamicakaysb a spe-
cific state of the hybrid automaton. W i1suAL and GHARON have perhaps
the most intuitive syntax and semantics for this purposedWVISUAL a
state of the hybrid automaton can be refined into a contintiouws system.
CHARON allows a mode to be described by a set of algebraic and differe
tial equations. In @BECKMATE, SIMULINK , and HrsDEL a hybrid system is
modeled as two main blocks: a state machine and a set of dgabsystems.
The automaton is described by a finite state machine whegmnaition can
be triggered by an event coming from a particular event-ggios block that
monitors the values of the variables of the dynamical systemthe other
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Name Hierarchy Composition 00 Causality Algebraic Loops ni@wous/Discrete
Interface

SIMULINK /STATEFLOW Yes Through contin-  No Causal Solved through — STATEFLOW out-
uous  variables explicit instantia- puts acting on
(SIMULINK ) and tion of algebraic SIMULINK blocks
discrete  events loops solvers
(STATEFLOW)

MODELICA Yes Through connec-  Yes Non-causal Simulator depen- Events enabling
tion statements classes and  dent equations

causal functions

HyVisuAL Yes Through  ports  Yes Causal Not supported States  refined
exposing internal into  dynamical
variables, both systems and spe-
continuous  and cial  conversion
discrete blocks

Scicos Yes Through contin- No Causal Not supported Discrete  states
uous and discrete affecting contin-
variables uous states

SHIFT Yes Through  con-  Yes Causal Not supported Location associ-
tinuous vari- ated with flows
ables, automata and reset maps

transitions  syn-
chronization and
components

CHARON Yes Through connec-  No Causal Not supported Modes defining
tions of agents’ differential and
variables algebraic  con-

straints and reset
maps

HYTECH No Synchronization No Non-Causal Yes Locations associ-
of automata and ated with flows
shared variables and reset maps

PHAVER No Synchronization No Non-Causal Yes Locations associ-
of automata and ated with flows
connection by and reset maps
name

HSoOLVER No No No Non-Causal Yes Modes  associ-

ated with flows
and reset maps

CHECKMATE No No No Causal Not supported Mode selectors

switching  dy-
namics and affine
reset maps

drdt No No No Causal Yes Location associ-

ated with flows

HYSDEL No No No Causal Not supported Mode selec-

tors  switching
dynamics

Table 5.4 Comparing the modeling approaches: languagerésat

hand, the finite state machine can generate events that raréose mode-
change block whose purpose is to select a particular dyrsad@pending on
the events. S8icosimplements the automaton directly as an interconnection
of blocks whose events can affect the continuous state skthécks that
implement the continuous dynamics. INOAELICA, the occurrence of an
event can enable or disable equations that affect the emmtsevolution of
the system variables.

The type of dynamics supported by each language dependsanaim
target of the corresponding tool. For tools targeting satiah, there are
very few restrictions, dynamics can be linear or non-lin&ame tools like
HY TECH andd/dt, only allow linear dynamics. This restriction is needed in
order to limit the complexity of the verification and syntisesigorithms. The
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same kind of restrictions are imposed on the specificatiquafd conditions
and invariants. Other verification tools, likeHECKMATE and HSOLVER,
allow one to use more complicated dynamics and perform anoajppa-
tion of the trajectories. Their application is still limitdo simple examples.
PHAVER allows the specification of affine dynamics and it also suggpor
composition of hybrid automata. The verification algoritigwvery efficient
and can be instructed by the user. It also has the capabflithexking re-
finements and simulation relations. Invariants are onlylieitly supported
by CHARON, HYTECH, d/dt, PHAVER and HLVER while the other tools
have triggering guards semantics.

While SIMULINK /STATEFLOW does not explicitly distinguish between
discrete and continuous signals, all the other languageSalne languages
like CHARON and MODELICA use special type modifiers to indicate whether
a variable is discrete or continuous. However, seenantics is differentin
the two cases. In EARON a discrete variable is defined to be constant be-
tween two events and, therefore it has a derivative equa¢to. zn MoD-
ELICA, instead, the derivative of discrete variables is not ddfi&raphical
languages like MVISUAL, SIMULINK , and Sicos rely on attributes as-
sociated with ports. Also, signal types can be automayidaferred during
compilation through a static analysis of the system topplétySDEL and
CHECKMATE describe the hybrid system as a finite state machine corthecte
to a set of dynamical systems, which makes the separatiomsofete and
continuous signals very sharp.

Table 5.4 shows the features provided by the different tom®els are
ordered from the one that gives more freedom to the designéret most
restrictive one.

Two very important features for modeling complex systeneshéerarchy
and composition. Not all languages support the compositiomybrid sys-
tems: GHECKMATE, d/dt and HysDEL only allow the designer to describe
a monolithic model. Not supporting composition requires tiser to input a
hybrid automaton that is the result of the cross product (mmsition) of the
constituent automata. This usually leads to a model withgemumber of
states.

An interesting and useful feature is object orientation JOBy ob-
ject orientation we mean the possibility of defining objeatsl extending
them through inheritance and field/method extension. Fiamviewpoint,
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SIMULINK is not object oriented since it is not possible to define aystbm
and then inherit its properties and add other capabilities.

Another very important feature is the possibility of modglinon-causal
systems. MbDELICA and the verification tools are the only languages that
allow non-causal modeling.

None of the simulation languages considered in this papealttear def-
inition of the semantics of programs that contain algebi@ps. All of them
rely on the simulation engine that cannot solve algebraspscand will stop
with an error message. We believe that a language has to gheaaing to
programs containing algebraic loops and the meaning shmiiddependent
from the simulator’s engine. The situation is different f@rification tools
that either do not allow the creation of algebraic loops bgstaction, or
they handle algebraic loops symboalically.

The last column in Table 5.4 describes how discrete and ruamiis sig-
nals and blocks interact with each otheHECKMATE and HrSDEL use an
event-generator and a mode-change blockVisuAL and SMULINK pro-
vide special library blocks to convert between discrete emtinuous sig-
nals. In icos a block can have both continuous and discrete inputs as well
as continuous and discrete states. Discrete states caanoflcontinuous
states. GARON and MoODELICA have special modifiers to distinguish be-
tween discrete and continuous signals. As in all other laggs, assignments
of one to the other are not allowed and can be statically a@uedky a simple
type checker).
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The Future: Towards the Development of a
Standard Interchange Format

We argued that a single environment cannot offer a comptétgien to the
needs of designers who use hybrid models to represent ttensysmder de-
velopment. Hence, having a framework where different toalsinteract and
exchange information is of paramount importance to advérestate-of-the-
art in the field of hybrid systems. One way to accomplish thitiadopt a
standard language with its syntax and semantics being #ig foa the devel-
opment of a number of design tools including simulationpfal verification
and synthesis. While this would be highly desirable, it vlordquire a mas-
sive restructuring of several of the available tools andrenments, an almost
impossible proposition. An alternative that has been ssfakin Electronic
Design Automation (EDA) is to develop amerchange formathat serves as
a bridge among the different tools. We believe this path &sitde and we
give some insight on how to design this format.

An interchange formais a file, or a set of files, that contains data in
a given syntax that is understood by different interactiogls. It is not a
database nor a data structure, but a simpler object whosésgodoster the
exchange of data among different tools and research grdtugsmportant
to understand the differences between modeling languawtsngerchange
formats.

156
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The goal of a modeling language is enabling the formal remtasion
of selected aspects of a system. As such, a modeling langsiayeays re-
strictive (only selected aspects are modeled), formal Welsdefined con-
crete syntax, abstract syntax, and semantics) and unacusgiihe goal of
an interchange format is to communicate models among tcsitg wiffer-
ent modeling languages. Accordingly, interchange forraegsnot restrictive
(all syntactically and semantically sound models can berahanged), syn-
tax free (allow tools to use different domain specific cotergyntax) and
unambiguous.

There are two opposite approaches for defining model indegd for-
mats. In thesemantic free approactine interchange format is nothing more
than a common transfer format for models. In this case modakformers
(semantic translators) must provide a pairwise mappingngntee tool mod-
els based on their shared portion of the semantics. Iseh@antically inclu-
sive approacha common modeling language and transfer format is defined
for model interchange. This has broad enough semanticdow ekporting
and importing individual tool models to and from this shale@tguage.

6.1 Semantic-Free and Semantically-Inclusive Inter-
change Formats in EDA.

In the early 1980s, the Integrated Circuit community obsera proliferation
of tools from different companies and for different purpgs@iven the rel-
ative immaturity of EDA, and driven by the necessity of maining market
share, each EDA company based its set of tools on a propyristaresen-
tations whose details were not known to other companiesdifitian, the
largest IC companies had significant internal EDA investisietiheir tools
were incompatible with each other and with the EDA vendoff€rongs mak-
ing the construction of complete design flows technicallgy\ahallenging if
not impossible.

In 1983, representatives of the major IC companies, of sobw Eom-
panies and of the University of California at Berkeley forrike Electronic
Design Interchange Format (EDIF) Steering Committee whih intent of
defining a standard format for interchanging design infdaiomeacross EDA
tools. EDIF was semantically “free” and defined exclusivelg syntax of
the interchange format. After the definition of the intemdp@ format, each
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company started developing translators to write and readyae Besides
limitations in the expressiveness of the chosen syntaxyiia problem with
the early versions of EDIF was the ambiguity of the languapese free in-
terpretation lead to the definition of many flavors of the sata@dard. The
meaning of an EDIF description was indesacoded in the translators To
solve this problem, the EDIF Committee realized that théhsarmbiguities
had to be ruled out by giving a more precise semantics to EDNs. is why,
in the latest version of the interchange format, an inforomamodel is at-
tached to a description. The information model is descriimethe formal
language EXPRESS and has a formally defined semantics.

The Library Exchange Format/Design Exchange Format (LEHDvere
defined by Cadence Design Systems to exchange data acrdssessyrand
layout tools. These formats have been recently made puldichilable as
part of the Open Access initiative, an important projecteéiree a common
data base and data format for EDA. The approach followedisncise is to
provide also a C++ application programming interface (AR& can be used
to interface tools based on these formats and, that ultlynaffer a unique
semantic interpretation of these formats. The user of ttezéhange format
does not directly read or write the models but rather use@Bleio import
and export the necessary information.

The Berkeley Logic Interchange Format (BLIF) is a hardwagsatiption
language for the hierarchical description of sequentralitis which serves as
an interchange format for synthesis and verification todie BLIF language
has a very precise semantics that can be used to define treniapiation of
finite state machine in terms of latches and combinatiorgtlo

Semantically-free interchange formats are very flexibletheir interpre-
tation of the models written in such format is ambiguous.sSehiaterchange
formats cannot be used to capture models in a domain likeichglystems
where there are semantic differences among tools that slatan should be
able to understand for a correct translation.

Semantically-inclusive interchange formats impose aifipenodel. The
advantage in this case is that the interpretation of a medeiambiguous. In
the case of BLIF, this approach is a valuable propositiorabse its model
(boolean algebra and state machines) is universally asgaptthe field of
logic synthesis and verification. Semantically-inclusmeerchange formats,
though, reduce the degrees of freedom of the tools that shargata using
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the format. This may not be acceptable today in the case diyied system
domain where there is a great deal of semantic differencesigisimulation,
verification and synthesis tools. We review next what has [wkmne in this
domain and we propose a novel approach that should solvetheissues in
interchange formats for hybrid systems.

6.2 The Hybrid System Interchange Format.

The definition of astandardinterchange format among tools that deal with
hybrid systems would create a fertile ground for furthemghoof the field
and for the pervasive use of hybrid technology in industmythle U.S., the
DARPA MOoBIES project made the importance of a standard ahi@nge for-
mat very clear and supported the development ofHiibrid Systems Inter-
change Forma{HSIF) as a way of fostering interactions among its partici-
pants. HSIF has been developed by G. Karsai, R. Alur andagplies at Van-
derbilt University and the University of Pennsylvania. FShodels represent
a system as a network of hybrid automata. Each hybrid automata finite
state machine in which states include constraints on contis behaviors
and transitions describe discrete steps. Automata in aonktgommunicate
by means of variables that can be of two kinds: signals anegdhariables.
Signals are used to model predictable execution with symgus communi-
cation between automata. Shared variables are used fochasyilous com-
munication between loosely coupled automata. The curr&liFspecifica-
tion is given in [83, 145], while a synthetic analysis of itsimfeatures can
be found in [45]. HSIF is based on a semantically inclusiverapch. How-
ever, in its current stage, the HSIF specification has thevimhig unresolved
issues:

(1) It is semantically too rich to become a semantic free com-
mon transfer format, but semantically too restrictive tadrae
a common modeling language. For example, it prevents “by-
construction” zero-time loops among FSMs to eliminate ikl r
of non-deterministic behavior stemming out of a combinatid
deterministic subsystems.

(2) Itis syntactically too restrictive because it lacksson for hierar-
chical FSMs. This can be problematic as other models oftewal
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the creation of a hierarchical network of FSMs. For instamse
porting a HrVISUAL hierarchical model into HSIF requires that
the hierarchy of each FSM be flattened first, a transformdhiah
is hard to reverse.

Onthe other hand, it must be noted that HSIF is not a comppetgubsal, but
rather a work in progress. It helped MoBIES researchersrstaied some of
the fundamental problems in forming a standardized secwafur tools and
some of the hard issues of having different kinds of semamtianodeling

languages. The jury is still out to determine whether irtarge formats will
evolve toward a semantic free or semantically inclusivealion. We argue
that the elimination of semantically unsound behaviorsukhbe up to the
tools, particularly the synthesis tools, and not to thergitange format. Oth-
erwise, the format may not be able to accept the descriptidagitimate

systems in tools where a larger set of behaviors is acceythde we advo-

cate that tools should be very careful in adopting liberatlels, we believe
that the design methodology should be enforced by tools yattbrchange
formats.

6.3 Requirements for a Standard Interchange Format.

To further motivate our views, we offer here some considamatabout in-
terchange formats that are the result of experience in thi dieElectronic
Design Automation and of a long history in participating Ire tftormation
of standard languages and models for hardware design. Tioeviftg list

summarizes what we believe are fundamental charactsrisfi@ny inter-
change format for tools and designs (a more detailed diszusan be found
in [147]). An interchange format must:

e support all existing tools, modeling approaches and lagegsian
a coherent global view of the applications and of the theory;

e support heterogeneous modeling, i.e. the ability of reprisg
and mixing different models of computation.

e be open, i.e., be available to the entire community at no @odt
with full documentation;

e support a variety of export and import mechanisms;

e support hierarchy and object orientation (compact reptesen,
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Tool

Standard
Interchange
Format

Fig. 6.1 Role of an interchange format for design tools.

entry error prevention).

By having these properties, an interchange format can bectoeformal
backbone for the development of sound design methodoldtigiesgh the as-
sembly of various tools. In general, a design automation isosomposed of
tools that have different purposes: specification, sinutasynthesis, formal
verification. Hence, they are often based on different fdismes and operate
on the design at different levels of abstraction. The rol¢hefinterchange
format is to facilitate the translation of design specifimas from one tool
to the other. As illustrated in Figure 6.1, the process of imgpyrom the de-
sign representation used by todlto the one used by tod® is structured in
two steps: first, a representation in the standard integgnéormat is derived
from the design entry that is used Hy then a preprocessing step is applied to
produce the design entry on whi¢hcan operate. Notice that tosl may not
need all the information on the design that were used laynd, as it operates
on the design, it may very well produce new data that will bigtem into the
interchange format but that will never be usedAyNaturally, the semantics
of the interchange format must be rich enough to capture protéct” the
different properties of the design at the various stagebefiesign process.
This guarantees that there will be no loss going from onegdesivironment
to another due to the interchange format itself. The formatdeed aeutral
go-between
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6.4 Metropolis-based abstract semantics for Hybrid Sys-
tems.

Based on our previous discussions, we believe #mainterchange format
should 1) be flexible enough to capture the largest possilalsscof mod-
els in use today and even tomorrow and 2) at the same time clave
a precise semantics to avoid ambiguitiherefore, we believe that an inter-
change format must be based on a preeibstract semanticghat can be
refined into concrete semantics depending on the specifigrdésols that
imports/exports a model.

In [147] we offered a proposal for an interchange format fgbrid
systems whose formal semantics is based on trerTddPOLIS Meta-
Model [162]. METROPOLISiS an ambitious project supported by the GSRC
(Gigascale System Research Center), CHESS (Center foridHgbd Em-
bedded Software Systems) and grants from industry. Theisd@aprovide
an infrastructure based on a model with precise semangtggneral enough
to support the models of computation proposed so far antigagame time,
to allow the invention of new ones. The model, calle&™oproLisMeta-
Modelfor its characteristics, is capable of not only capturing filmctional-
ity and the analysis, but also the architecture descrigiwhthe mapping of
functionality to architectural elements. Since the mods & precise seman-
tics, it can be used to support a number of synthesis and femadysis tools
in addition to simulation. MTROPOLISdoes not dictate the use of a particu-
lar design language nor of a unified flow for all applicatiahg infrastructure
is built so that it offers a translation path from specificatlanguages to the
metamodel. In addition, mechanisms are provided to all@rtegration of
external tools, thus alleviating the problems of buildiray$ with tools that
are developed independently and with different semantideiso

METROPOLISproposes a design methodology for embedded system de-
sign based on the following key aspects. First of all, it é=sathe designer
relatively free to use the specification mechanism (gragtoc textual lan-
guage) of choice, as long as it has a sound semantic found@tiodel of
computation[67, 130]). Secondly, the same formalism is used to reptesen
both the embedded system and some abstract relevant @retics of its
environment and implementation platform [151]. Finaltyséparates orthog-
onal aspects [112], such as: computation vs. communigdtioationality vs.
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architecture, behavior vs. performance indices. Thisrseipa results in bet-
ter re-use, because it decouples independent aspectaoihigt otherwise be
tied, e.g., a given functional specification to low-leveplementation details,
or to a specific communication paradigm, or to a scheduliggrahm. These
techniques, combined, also facilitate the extensive usymthesis, system-
level simulation, and formal verification techniques inartb speed up the
design cycle.

A detailed discussion of TROPOLIScan be found in [27, 28]. The com-
plete definition of the metamodel is given in [162]. Finally2[7] discusses the
modeling of architectural resources inEVROPOLIS

The main challenge in defining an interchange format is tandedi lan-
guage with a formal semantics that remains general enoughpasvides
an easy translation path to/from all other languages ofeste In our pro-
posal [147], the interchange format defipescesse$or the solution of equa-
tions andmediafor communicating results among processes. These are orga-
nized as a network that consists of several layers, eacespmnding to a par-
ticular aspect of the hybrid computation, such as the disatgnamics, the
continuous dynamics and the specific equations involvetiendescription.
However, while the meta-model semantics provides the asiaterpreting
and evaluating the moddhe precise semantics of the network is left unspec-
ified. This is an essential aspect of the language architectareomplete the
description of the model, the user enters a separate vieighwbnsists of a
collection of schedulers that control the evolution of teéwvork of processes,
thereby describing the way in which the computation is pentd. Because
this view is also written using the Meta-Mod#éhe semantics of the model is
part of the interchange format itsefind is therefore accessible to tools and
translators. By doing so, users of the interchange fornehat only able to
describe the structure of a model, but also the particulay wavhich the
structure should be interpreted. This trades off flexipiét the expense of
some additional complexity in the description of a systeinmuist be em-
phasized, however, that the characterization of a hybridehm terms of
the Meta-Model must be done only once. In this sense, theigsanilar
to defining interpretation schemas in extensible mark-nguages such as
XML [175]. The systems that use a specific model can then dhareame
scheduling network.

The abstract semantics of the interchange format proposgdiv] is re-
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ported in [146]. To facilitate the customization to a spec#femantics, the
model designer uses generic schedulers and refines thdenraptation by
defining the behavior of certain abstract functions thatimreked during a
scheduling cycle. These, for example, have to do with th@alization, the
dynamic determination of the step (or integration) size tedresolution of
the equations. The interchange format has also been ddsignake advan-
tage of the intrinsic hierarchy of the system. In particutae function that
determines the current valuation of the system is pargtioamong the var-
ious components, thus enhancing modularity and main@iencapsulation.
In [146], we also illustrate how the interchange format carubed to create
a design flow that includes tools as diverse asvHsUAL, MODELICA and
CHECKMATE.

6.5 Conclusions.

In our opinion, HSIF is an excellent model for supportingacielesign of hy-
brid systems but not a true interchange format because stiatesupport the
models of some important hybrid systems tools and it doeslimt hierar-
chical representations. TheMBJLINK /STATEFLOW internal format could be
ade facto standardbut it is not open nor does it have features that favor easy
import and export. MDELICA has full support of hierarchy and of general
semantics that subsumes most if not all existing languaggsoals. As such,

it is indeed an excellent candidate but it is not open. Intaidi all of them
have not been developed with the goal of supporting hetesmges imple-
mentations. On the other hand, theeMRorPoLISmetamodel has generality
and can be used to represent a very wide class of models ofutatigm. It
has a clear separation between communication and conguutasi well as
architecture and function. However, while the metamodsliitis perfectly
capable to express continuous time systems, there is nadday that can
manage this information in KITROPOLIS In conclusion, we believe that no
approach is mature enough today to be recommended for gemunation.
However, we also believe that combining and leveraging HMBDELICA,
and the MeTROPOLISMetamodel, we can push for the foundations of a stan-
dard interchange format as well as a standard design cdphgeage where
semantics is favored over syntax. Consequently, we have médst step in
this direction by proposing a new interchange format andrbggnting some
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examples of its application to the definition of a design flbattincludes
HYVISUAL, MODELICA and GHECKMATE to enter the design, simulate it
and formally verify its properties [147, 146]. The new imdeange format is
at this point a proposal, since work still needs to be donaippart it with
the appropriate debugging and analysis tools and withlators to and from
existing tools. We are confident that a variation of our peapavill be even-
tually adopted by the community interested in designing eshdled systems
with particular emphasis on control. We are open to any sstggeand rec-
ommendation to improve our proposal.
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