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Abstract: In this paper we present an approach to control a vehicle in a hostile environment
with static obstacles and moving adversaries. The vehicle is required to satisfy a mission
objective expressed as a temporal logic specification over a set of properties satisfied at regions
of a partitioned environment. We model the movements of adversaries in between regions of the
environment as Poisson processes. Furthermore, we assume that the time it takes for the vehicle
to traverse in between two facets of a region is exponentially distributed, and we obtain the rate
of this exponential distribution from a simulator of the environment. We capture the motion of
the vehicle and the vehicle updates of adversaries distributions as a Markov Decision Process.
Using tools in Probabilistic Computational Tree Logic, we find a control strategy for the vehicle
that maximizes the probability of accomplishing the mission objective. We demonstrate our
approach with illustrative case studies.
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1. INTRODUCTION

Robot motion planning and control has been widely stud-
ied in the last twenty years. Recently, temporal logics,
such as Linear Temporal Logic (LTL) and Computational
Tree Logic (CTL) have become increasingly popular for
specifying robotic tasks (see, for example, [Conner et al.,
2007, Karaman and Frazzoli, 2008, Kloetzer and Belta,
2008b, Loizou and Kyriakopoulos, 2004]). It has been
shown that temporal logics can serve as rich languages
capable of specifying complex mission tasks such as “go
to region A and avoid region B unless regions C or D are
visited”.

Many of the above-mentioned works that use a temporal
logic as a specification language rely on the assumption
that the motion of the robot in the environment can be
abstracted to a finite transition system by partitioning
the environment. The transition system must be finite in
order to allow the use of existing model-checking tools for
temporal logics (see [Baier et al., 2008]). Furthermore, it
is assumed that the resultant transition system obtained
from the abstraction process is deterministic (i.e., an
available control action deterministically triggers a unique
transition from one region of the environment to anther
region), and the environment is static. To address environ-
ments with dynamic obstacles, [Kress-Gazit et al., 2007,
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Topcu et al., 2009] find control strategies that guarantee
satisfactions of specifications by playing temporal logic
games with the environment.

In practice, due to actuator and sensor noise, a determin-
istic transition system may not adequately represent the
motion of the robot. [Kloetzer and Belta, 2008a] proposed
a control strategy for a purely non-deterministic transition
system (i.e., a control action enables multiple possible
transitions to several regions of the environment). [Lahi-
janian et al., 2010] pushed this approach a step further by
modeling the motion of the robot as a Markov Decision
Process (MDP) (i.e., a control action triggers a transition
from one region to anther with some fixed and known
probability). The transition probabilities of this MDP can
be obtained from empirical measurements or an accurate
simulator of the environment. A control strategy was then
derived to satisfy a mission task specified in Probabilistic
Computational Tree Logic (PCTL) with the maximum
probability.

In this paper, we extend this approach to control a vehicle
in a dynamic and threat-rich environment with static
obstacles and moving adversaries. We assume that the
environment is partitioned into polygonal regions, and a
high level mission objective is given over some properties
assigned to these regions. The main contribution of this
paper is an approach to design a reactive control strategy
that provides probabilistic guarantees of accomplishing the
mission in a threat-rich environment. This control strategy
is reactive in the sense that the control of the vehicle



is updated whenever the vehicle reaches a new region in
the environment or it observes movements of adversaries.
In order to solve this problem, we capture the motion of
the vehicle, as well as vehicle estimates of the adversary
distributions as a MDP. This way, we map the vehicle
control problem to the problem of finding a control policy
for an MDP such that the probability of satisfying a PCTL
formula is maximized. For latter, we use our previous
approach presented in [Lahijanian et al., 2010].

Due to space limitations preliminaries are not included in
this paper. We refer readers to [Baier et al., 2008, Ross,
2006] for information about MDPs and to [Baier et al.,
2008, Lahijanian et al., 2010] for detailed description of
PCTL. Further insight into our approach can be found
in the technical report [Cizelj et al., 2011]. Furthermore,
[Cizelj et al., 2011] analyzes computational complexity of
our approach.

2. PROBLEM FORMULATION AND APPROACH

We consider a city environment that is partitioned into
a set of polytopic regions R. We assume the partition 1 is
such that adjacent regions in the environment share ex-
actly one facet. We denote F as the set of facets of all
polytopes in R. We assume that one region rp ∈ R is
labeled as the “pick-up” region, and another region rd ∈ R
is labeled as the “drop-off” region. Fig. 1 shows an example
of a partitioned city environment. We assume that there
is a vehicle moving in the environment. We require this
vehicle to carry out the following mission objective:

Mission Objective: Starting from an initial facet finit ∈
F in a region rinit ∈ R, the vehicle is required to reach
the pick-up region rp to pick up a load. Then, the vehicle
is required to reach the drop-off region rd to drop-off the
load.

We consider a threat-rich environment with dynamic ad-
versaries and static obstacles in some regions. The proba-
bility of safely crossing a region depends on the number of
adversaries and the obstacles in that region. We say that
the vehicle is lost in a region if it fails to safely cross the
region (and thus fails the mission objective).

Let integers Mr and Nr be the minimum and maximum
number of adversaries in region r ∈ R, respectively. We
define

pinitr : {Mr, . . . , Nr} → [0, 1] (1)

as a given (initial) probability mass function for adver-
saries in region r ∈ R, i.e. pinitr (n) is the probability of

having n adversaries in region r and
∑Nr
n=Mr

pinitr (n) = 1.
However, adversaries may move in between regions. We
model the movements of adversary in a region by arrivals
of customers in a queue. Thus we consider the movements
of adversary as Poisson processes and we assume that the
time it takes for an adversary to leave and enter region
r is exponentially distributed with rate µl(r) and µe(r),
respectively. We further assume that adversaries move in-
dependent of each other, and at region r, the distributions
of adversaries in adjacent regions of r depend only on the
adversaries in r and the movements of adversaries between
r and its adjacent regions.
1 Throughout the paper, we relax the notion of a partition by
allowing regions to share facets

In addition, each region has an attribute that characterizes
the presence of obstacles, which we call obstacle density.
We define

por : {0, 1, . . . , No
r } → [0, 1], (2)

as the probability mass function of the obstacle density
in region r ∈ R, i .e., por(o) is the probability of having

obstacle density o in region r and
∑Nor
o=0 p

o
r(o) = 1. Unlike

adversaries, we assume that obstacles can not move in
between regions.

We assume that the vehicle has a map of the environment
and can detect its current region. When the vehicle enters
a region, it observes the number of adversaries and the
obstacle density in this region. When the vehicle is travers-
ing inside a region, it detects movements of adversaries
between the current region and its adjacent regions.

The motion capability of the vehicle in the environment is
limited by a (not necessarily symmetric) relation ∆ ⊆ F ×
F , with the following meaning: If the vehicle is at a facet
f ∈ F and (f, f ′) ∈ ∆, then it can use a motion primitive
to move from f towards f ′ (without passing through any
other facet), i.e., ∆ represents a set of motion primitives
for the vehicle. The control of the vehicle is represented
by (f, f ′) ∈ ∆, with the meaning that at facet f , f ′ is the
next facet the vehicle should move towards. Fig. 1 shows
possible motions of the vehicle in this environment. We
assume that the time it takes for the vehicle to move from
facet f to facet f ′ is exponentially distributed with rate
λ(δ), where δ = (f, f ′) ∈ ∆. This assumption is based on
results from a simulator of the environment (see Sec. 5).

During the time when the vehicle is executing a mission
primitive (f, f ′) (i.e., moving between facet f and f ′), we
denote the probability of losing the vehicle as:

plostδ : {Mr, . . . , Nr} × {0, . . . , No
r } → [0, 1], (3)

where δ = (f, f ′) ∈ ∆, and r is the region bounded by f
and f ′. We obtain plostδ (n, o) and λ(δ) from the simulator
of the environment (see Sec. 5 for more details).

In this paper we aim to find a reactive control strategy for
the vehicle. A vehicle control strategy at a region r depends
on the facet f through which the vehicle entered r. It
returns the facet f ′ the vehicle should move towards, such
that (f, f ′) ∈ ∆. The control strategy is reactive in the
sense that it also depends on the number of adversaries and
the obstacle density observed when entering the current
region, as well as the movements of adversaries in the
current region. We are now ready to formulate the main
problem we consider in this paper:

Problem: Consider the partitioned environment defined
by R and F ; initial facet and region finit and rinit;
the motion capability ∆ of a vehicle; initial adversary
and obstacle density distributions for each region pinitr
and por; the probability of losing the vehicle plostδ ; rate
of adversaries µl(r) and µe(r); and rate of the vehicle
λ(δ); Find the vehicle control strategy that maximizes the
probability of satisfying the Mission Objective.

The key idea of our approach is to model the motion of
the vehicle in the environment, as well as vehicle estimates
of adversary distributions in the environment as an MDP.
By capturing estimates of adversary distributions in this
MDP, the vehicle updates the adversary distributions of its
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Fig. 1. Example of partitioned city environment. Left: A realistic scenario representing a city environment partitioned
into regions. Right: Possible motion of the vehicle in the environment.

adjacent regions as it detects the movements of adversaries
in the current region, and the control strategy produces an
updated control if necessary. As a result, a policy for the
MDP is equivalent to a reactive control strategy for the
vehicle in the environment. We then translate the mission
objective to a PCTL formula and find the optimal policy
satisfying this formula with the maximum probability.

3. CONSTRUCTION OF AN MDP MODEL

3.1 Update of the adversary distributions

As adversaries enter and leave the current region, it is
necessary to update the distributions of adversaries in
adjacent regions. Because the vehicle can only observe
the movements of adversaries in its current region, and
due to the assumption that distributions of adversaries in
adjacent regions depend only on the current region and
its adjacent regions, it is only necessary to update the
adversary distributions for adjacent regions, and not for
all regions in the environment. Our MDP model captures
all possible adversary distributions of adjacent regions at
each region.

Let us denote the distribution for region r as pr. The initial
adversary distribution of region r is given in Eq. 1. Thus,
the adversary distribution of region r is a probability mass
function pr : {M, . . . , N} → [0, 1], where Mr ≤M ≤ N ≤
Nr. Note that if M = N = Nr, then pr(Nr) = 1 and
no adversary may enter region r, or else the assumption
that Nr is the maximum number of adversaries in region
r would be violated. Similarly, if M = N = Mr, then no
adversary may leave region r.

Given the current adversary distribution pr, assuming that
an adversary has entered region r (pr(Nr) 6= 1), then we
define the updated distribution as p+

r in the following way:

p+r :

{
{M + 1, . . . , N} → [0, 1] if N = Nr
{M + 1, . . . , N + 1} → [0, 1] if N < Nr,

(4)

such that:

p+r (n) =

{
pr(n− 1) +

pr(N)

N −M
if N = Nr

pr(n− 1) if N < Nr.
(5)

If N = Nr, given that an adversary entered region r,
we can conclude that the previous number of adversaries

cannot be Nr, thus we evenly redistribute the probability
associated with Nr before an adversary entered the region.
If N < Nr, the probability distribution simply shifts by 1.

Similarly, assuming that an adversary has left region r,
then pr(Mr) 6= 1 and we define the updated distribution
as p−r in the following way:

p−r :

{
{M, . . . , N − 1} → [0, 1] if M =Mr

{M − 1, . . . , N − 1} → [0, 1] if M > Mr,
(6)

such that:

p−r (n) =

{
pr(n+ 1) +

pr(M)

N −M
if M =Mr

pr(n+ 1) if M > Mr.
(7)

Given pr, it is easy to verify that p+
r : {M, . . . , N} → [0, 1]

is a valid probability mass functions, i.e.
∑N
n=M p+

r (n) = 1
(similarly for p−r ). Starting with the initial distribution
pinitr , we can use Eq. (4)-(7) to determine Dr, the set of
all possible distributions for region r.

3.2 MDP construction

Let us denote B ⊆ F × R as the boundary relation
where (f, r) ∈ B if and only if f is a facet of region
r. We denote the set of regions adjacent to region r as
Ar = {r1, . . . , rm} ⊂ R.

We define a labeled MDP M as a tuple (S, s0, Act, A, P,
Π, h) where: S is the finite set of states such that S =⋃
r∈R{{(f, z) ∈ B|z = r}×{Mr, . . . , Nr}×{0, 1, . . . , No

r }×
{lost,alive} ×

∏
r′∈Ar Dr′}. The meaning of the state is

as follows: ((f, r), n, o, alive, pr1 , . . . , prm) means that the
vehicle is at facet f , heading towards region r, and in
region r there are n adversaries, o obstacles, the ve-
hicle is currently not lost, and the adversary distribu-
tion for the adjacent region ri ∈ Ar = {r1, . . . , rm}
is pri . ((f, r), n, o, lost, pr1 , . . . , prm) means that the ve-
hicle did not make it to facet f because it was lost
in the previous region while heading towards f ; s0 =
((finit, rinit), 0, 0, alive, pinitr′1

, . . . , pinitr′
k

) is the initial state,

where Arinit = {r′1, . . . , r′k}; Act = ∆ ∪ τ is the set of
actions, where τ is a dummy action when the vehicle is
lost; A : S → 2Act is a function specifying the enabled
actions at a state s and is defined as follows: If the vehicle



is alive, then A(s) = {(f, f ′) ∈ ∆}, otherwise A(s) = τ ;
P : S×Act×S → [0, 1] is a transition probability function
such that for all states s ∈ S and actions a ∈ A(s):∑
s′∈S P (s, a, s′) = 1, and for all actions a /∈ A(s) and s′ ∈

S, P (s, a, s′) = 0. We describe how we generate the transi-
tion probability function P in Sec. 3.3; Π = {rp, rd, alive}
is the set of properties; h : S → 2Π is a function that
assigns some properties in Π to each state of s ∈ S. We
define h as follows: If s = ((f, r), n, o, b, p1, . . . , pm), then
{alive} ∈ h(s) if and only if b = alive, {rp} ∈ h(s) if and
only if r = rp, and {rd} ∈ h(s) if and only if r = rd.

As the vehicle moves in the environment, it updates its
corresponding state on M when: 1) it reaches a facet
f and enters a region r, and observes the number of
adversary n and obstacle density o in region r, then it
updates its state to ((f, r), n, o, alive, pinitr1 , . . . , pinitrm ); 2) an
adversary leaves the current region r and moves into region
r′, given the current adversary distribution of region r′

as pr′ , the vehicle updates this distribution to p+
r′ ; 3) an

adversary enters the current region r from region r′, given
the current adversary distribution of region r′ as pr′ , the
vehicle updates this distribution to p−r′ ;

Since actions of M consists of ∆, M is designed so that
its control policy (for details see [Baier et al., 2008], but
roughly control policy is a function that specifies for every
finite sequence of states of M, the next action to be
applied) can be directly translated to a reactive control
strategy for the vehicle. When the vehicle updates its state
inM, then the action δ ∈ ∆ at its current state determines
the next facet the vehicle should move towards.

3.3 Generating the transition probability function P

First, we define a random variable e for the time in
between a vehicle entering the current region r at facet f ,
heading towards facet f ′ and an event occurring, which
can be: 1) an adversary entering the current region;
2) an adversary leaving the current region; or 3) the
vehicle reaching facet f ′. Note that if X1, . . . , Xn are
independent exponentially distributed random variables
with rate parameters λ1, . . . , λn, then min{X1, . . . , Xn}
is exponentially distributed with parameter λ =

∑n
i=1 λi.

The probability that Xk is the minimum is Pr(Xk =

min{X1, . . . , Xn}) = λk
λ . By assumption, movements of

adversaries are independent of each other. Since the arrival
and departure of adversaries in the current region are
modeled as two Poisson processes with inter-arrival and
inter-departure time exponentially distributed with rate
µe(r) and µl(r), respectively, and the time required for the
vehicle to reach facet f ′ is exponentially distributed with
rate λ(δ), where δ = (f, f ′), the random variable e is also
exponentially distributed. We assume e is exponentially
distributed with rate ν.

Since the vehicle can not detect the exact number of
adversaries in adjacent regions, only an estimated value
νe of ν can be obtained from the expected number of
adversaries in adjacent regions. Let us denote Er as the
expected value for the distribution pr. Assume the current
state as ((f, r), n, o, alive, pr1 , . . . , prm). If an adversary
can leave current region r (i.e. n > Mr and Cr 6= ∅,
where Cr ⊆ Ar is the set of adjacent regions to which
an adversary can enter) then the time it takes for an

adversary to leave region r is exponentially distributed
with rate µl(r)n because there are n adversaries in the
region and any of them can leave region r. Similarly, if
an adversary can enter the current region r (i.e. n <
Nr), and there exists an adversary that can leave an
adjacent region (i.e. Br 6= ∅, where Br ⊆ Ar is the
set of adjacent regions from which an adversary can
leave), then the time it takes for an adversary to enter
region r is exponentially distributed with the estimated
rate µe(r)

∑
r′∈Br Er′ , where

∑
r′∈Br Er′ gives the total

expected number of adversaries that can enter region r.
The time it takes for the vehicle to reach facet f ′ is
exponentially distributed with rate λ(δ). Therefore, the
estimated rate νe can be obtained as:

νe = λ(δ) + µl(r)nIl(Ar, n) + µe(r)
∑
r′∈Br

Er′ Ie(n) (8)

where n is the number of adversaries in the current
region; Il(Ar, n) = 0 when n = Mr or Cr = ∅, and
Il(Ar, n) = 1 otherwise; and Ie(n) = 0 if n = Nr, and
Ie(n) = 1 otherwise. The rate νe will be used to generate
the probability transition function P .

We define the probability transition function P : S×Act×
S → [0, 1] as follows: Let s = ((f, r), n, o, alive, pr1 , . . . , prm)
with {r1, . . . , rm} ∈ Ar.
• If s′ = ((f ′, r′), n′, o′, b′, pinitr′1

, . . . , pinitr′
k

), with {r′1, . . . , r′k}
∈ Ar′ , δ = (f, f ′) ∈ ∆ and r′ ∈ Ar, then: P (s, δ, s′) =

λ(δ)

νe
pr′ (n

′)por′ (o
′)(1− plostδ (n, o)), if b′ = alive

λ(δ)

νe
pr′ (n

′)por′ (o
′)plostδ (n, o), if b′ = lost.

Under the action (f, f ′), the transition from state s to
s′ indicates that either the vehicle reaches facet f ′ (s′ is
an “alive” state) or the vehicle is lost while traversing the
region r (s′ is a “lost” state). Let us first consider the

former case. λ(δ)
νe

corresponds to the probability that the

vehicle reaches facet f ′ before any adversary entering or
leaving region r. pr′(n

′) corresponds to the probability of
observing n′ adversaries in region r′ when entering region
r′. por′(o

′) corresponds to the probability of observing ob-
stacle density o′ for region r′. (1− plostδ (n, o)) corresponds
to the probability of safely crossing the current region with
n adversaries and obstacle density o. Since each of these
events are independent with each other, the probability of
transition is the multiplication of the above probabilities.
The same reasoning applies to the latter case, where (1−
plostδ (n, o)) is replaced by plostδ (n, o) as the probability of
losing the vehicle while crossing region r.
• If s′ = ((f, r), n + 1, o, alive, p′r1 , . . . , p

′
rm), with δ =

(f, f ′) ∈ ∆ for some f ′, pri = p′ri for all i = {1, . . . ,m}\{j}
and p′rj = p−rj for some j, then: P (s, δ, s′) =

µe(r)Erj
νe

.

The transition from state s to s′ indicates that an adver-
sary from region rj enters the current region before the
vehicle reaches facet f ′ or an adversary moves in between
the current region and another adjacent region. Thus, the
adversary distribution of region rj is updated to p′rj = p−rj .

• If s′ = ((f, r), n − 1, o, alive, p′r1 , . . . , p
′
rm), with δ =

(f, f ′) ∈ ∆ for some f ′, pri = p′ri for all i = {1, . . . ,m}\{j}
and p′rj = p+

rj for some j, then: P (s, δ, s′) = µl(r)n
νe|Cr| .

The transition from the state s to s′ indicates that an
adversary leaves the current region and enters region rj
before the vehicle reaches facet f ′ or an adversary enters



the current region. Thus, the adversary distribution of
region rj is updated to p′rj = p+

rj .

• If s = ((f, r), n, o, lost, pr1 , . . . , prm), then P (s, τ, s) = 1.
s corresponds to the case where the vehicle is lost, thus it
self-loops with probability 1.
• Otherwise, P (s, δ, s′) = 0.

In the technical report [Cizelj et al., 2011] we prove that
P is a valid transition probability function.

4. GENERATING THE OPTIMAL CONTROL
POLICY AND A VEHICLE CONTROL STRATEGY

After obtaining the MDP model, we solve our proposed
problem by using the PCTL control synthesis approach
presented in [Lahijanian et al., 2010] by translating the
problem to a PCTL formula. Formulas of PCTL are
interpreted over states of an MDP and are constructed by
connecting properties from a set Π using standard Boolean
operators, the temporal operator U denoting “until”, and
the probabilistic operator P. The Mission Objective is
equivalent to the temporal logic statement “eventually
reach rp and then rd while always staying alive”, which
can be translated to the following formula φ:

Pmax=?[alive U (alive ∧ rp ∧ P>0[alive U (alive ∧ rd)])]. (9)

The PCTL control synthesis tool takes an MDP and
a PCTL formula φ and returns the control policy that
maximizes the probability of satisfying φ as well as the
corresponding probability value. The tool is based on
the off-the-shelf PCTL model-checking tool PRISM (see
Kwiatkowska et al. [2004]). We use Matlab to construct
the MDP M, which together with φ is passed to the
PCTL control synthesis tool. The output of the control
synthesis tool is the optimal control policy that maximizes
the probability of satisfying φ. This policy can be directly
translated to the desired vehicle control strategy.

5. SIMULATOR OF THE ENVIRONMENT

We constructed a realistic test environment in order to
obtain the probability plostδ (Eq. 3) from existing data of
the distribution of obstacles in each region, and values for
rate of the vehicle, λ(δ), δ ∈ ∆. This test environment
consists of several components, which are shown in Fig. 2.
In order to obtain plostδ , we first generated the marginal
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Fig. 2. Test environment used to compute the probability
plostδ (n, o) and the rate λ(δ).

probability plostδ (o), δ = (f, f ′) as the probability of losing
the vehicle while traversing region r from facet f to f ′

with obstacle density o. This probability depends on the
motion planning algorithm for the vehicle traversing the
region, and the ability of the vehicle to detect obstacles.

We assumed that the obstacle data in the environment was
accurate and that there was no need for real-time obsta-
cle detection. We used a probabilistic road-map planner
[LaValle, 2006, Frewen et al., 2011] to solve the following
problem: given a starting point on a facet f and an ending
point on the facet f ′, find a shortest collision free path
between them. The planner uses a randomized algorithm
that consists of building a random graph over the free
space in the environment, and finding the shortest feasible
collision-free path. Because of the randomized nature of
the algorithm, there is a non-zero probability that a path
can not be found by the planner even if one exists. This is
the probability plostδ (o) because it is the probability that
the vehicle can not safely traverse from facet f to f ′.

We computed plostδ (o) using sampling (Fig. 2). Given
the obstacle density o, we generated a random map by
instantiating obstacles with random positions and sizes
so that the density was o. The map was provided to the
planner that generated a path. To implement the planner
at the top of Fig. 2, we used the vehicle motion primitives
defined in [Frazzoli et al., 2005]. The successes and failures
for each path were recorded. When a feasible path was
found, a standard model of the dynamics of a helicopter
[Bullo and Lewis, 2004] was used to simulate a trajectory
following the path and compute λ(δ).

We computed the joint probability plostδ (n, o) as a combina-
tion of the marginal probabilities plostδ (n) and plostδ (o). The
main reason for this approach was that while an accurate
model is available to compute the probability of failing to
traverse a region due to obstacles, the effect of adversaries
is difficult to model and it is part of our future work. For
the purposes of the case study in Sec. 6, we assumed the
probability of losing the vehicle due to adversaries to be
plostδ (n) = 0.01(n)2 for n ∈ [0, 10]. After the marginal
probabilities were obtained, we constructed the joint prob-
ability plostδ (n, o) using the following formula (see [Nelsen,

2006]): plostδ (n, o) = e−
√
−log(plost

δ
(n))−log(plost

δ
(o)).

6. RESULTS

We considered the scenario together with the partitioned
environment and the possible motion of the vehicle ∆
shown on Fig. 1. The initial probability mass function
for adversaries in region r ∈ R, pinitr , and the probability
mass function of the obstacle density in region r ∈ R,
por, are given in Table 1. In addition, we assumed that
there is no adversary or obstacle in region rp and rd. The
probability plostδ (n, o) and the rates of the vehicle λ(δ) for
all δ ∈ A were obtained from the simulator. We used
the following numerical values: λ((f, f ′)) = 0.128 when
f and f ′ are facets of r1 and r5, λ((f, f ′)) = 0.125 when
f and f ′ are facets of r2, r4, r8, r9, r10, and r11, and
λ((f, f ′)) = 0.091 when f and f ′ are facets of r3, r6, and
r7 with µe(r) = µl(r) = 0.05 for all r ∈ R.

We obtained the vehicle control strategy through the
method described in Sec. 4. Two vehicle runs are shown
in Fig. 3, corresponding to case A and case B (Table 1).
We found that the maximum probability of satisfying the
specification φ (Eq. 9) for cases A and B to be 0.141
and 0.805, respectively. The substantial difference between
these two maximum probabilities is due to the difference



Table 1. Obstacle density and adversary distri-
bution

Region Obstacle Adversary distribution
density case A case B

r1 1% pinitr1
(0) = 1 pinitr1

(0) = 1

r2 3% pinitr2
(x) = 1/3, x ∈ [7, 9] pinitr2

(x) = 1/3, x ∈ [2, 4]

r3 6% pinitr3
(x) = 1/3, x ∈ [7, 9] pinitr3

(x) = 1/3, x ∈ [2, 4]

r4 5% pinitr4
(x) = 1/3, x ∈ [1, 3] pinitr4

(x) = 1/3, x ∈ [2, 4]

r5 1% pinitr5
(x) = 1/3, x ∈ [7, 9] pinitr5

(x) = 1/3, x ∈ [2, 4]

r6 9% pinitr6
(x) = 1/3, x ∈ [7, 9] pinitr6

(x) = 1/3, x ∈ [2, 4]

r7 9% pinitr7
(x) = 1/3, x ∈ [1, 3] pinitr7

(x) = 1/3, x ∈ [2, 4]

r8 3% pinitr8
(x) = 1/3, x ∈ [1, 3] pinitr8

(x) = 1/3, x ∈ [2, 4]

r9 4% pinitr9
(x) = 1/3, x ∈ [1, 3] pinitr9

(x) = 1/3, x ∈ [4, 6]

r10 4% pinitr10
(x) = 1/3, x ∈ [1, 3] pinitr10

(x) = 1/3, x ∈ [4, 6]

r11 3% pinitr11
(x) = 1/3, x ∈ [7, 9] pinitr11

(x) = 1/3, x ∈ [2, 4]
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Fig. 3. Runs of the vehicle in the partitioned environment
for the given mission scenario and the data. Two
different adversary distributions are given in Table
1. The arrows represent movement of the vehicle in
between facets. Red and blue arrows correspond to
case A and case B, respectively.

in adversary distributions. A close analysis of the vehicle
runs together with the adversary distributions shows that
in case A the number of adversaries in regions r2, r3 and r6

is high, which results in the vehicle control strategy that
ensures that the vehicle avoids this regions.

For this particular case study, the MDP M had 1079
states. The Matlab code used to construct M ran for
approximately 14 minutes on a MacBook Pro computer
with a 2.5 GHz dual core processor. Furthermore, the time
it took the control synthesis tool to generate optimal policy
is 4 minutes.

7. CONCLUSIONS AND FINAL REMARKS

In this paper we provided an approach to obtain a reactive
control strategy that provides probabilistic guarantees for
achieving a mission objective in a threat-rich environment.
We modeled the motion of the vehicle, as well as vehicle
estimates of the adversary distributions as an MDP. We
then found the optimal control strategy for the vehicle
maximizing the probability of satisfying a given mission
task specified as a PCTL formula.

Future work include extensions of this approach to a
richer specification language such as probabilistic Linear
Temporal Logic (PLTL) and a more general model of the

vehicle in the environment such as a Partially Observed
Markov Decision Process (POMDP).
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