
Hierarchical Multi-objective Planning:
From Mission Specifications to Contingency Management

Xuchu (Dennis) Ding Brendan Englot Alessandro Pinto Alberto Speranzon Amit Surana

Abstract— We propose a hierarchical planning framework
for mission planning and execution in uncertain and dy-
namic environments. We consider missions that involve motion
planning in large, cluttered environments, trading off mission
objectives while satisfying logical/spatial/temporal constraints.
Our framework enables the decomposition of the planning
problem across different layers, leveraging the difference in
spatial and temporal scales of the mission objectives. We
show that this framework facilitates contingency management
under unanticipated events. Interaction between the various
layers requires appropriate model abstractions and common
message semantics. To satisfy these requirements, we adopt a
generic knowledge-based architecture that is independent from
a specific application domain. We show a specific instance of
our framework using a Constrained Markov Decision Process
(CMDP) planner at the higher level and a Multi-Objective
Probabilistic Roadmap (MO-PRM) planner at the lower level.
The resulting planning system is tested in a realistic scenario
where an agent is tasked with a mission in a large urban threat
rich environment under dynamic uncertain conditions. The
mission specification includes a Linear Temporal Logic (LTL)
formula that defines the desired behaviors, a list of metrics to
be optimized and a list of constraints on time, resources and
probability of mission success.

I. INTRODUCTION
Complex missions for aircraft such as cargo re-supply and

medical evacuation in a cluttered, city-like environment are
subject to several objectives and constraints. One may need to
minimize fuel consumption as well as mission time, maintain
a desirable probability of mission success, comply with
procedural requirements, etc. Moreover, mission contexts are
highly dynamic, forcing the mission management system to
react and adapt to new situations. These missions also require
agile motion in complex and partially known environments
perceived by noisy sensors whose inaccuracy is affected by
a dynamic environment with constantly changing conditions
such as lighting and weather.

For this class of missions, objectives and constraints can
be divided into two major categories: mission and motion.
The first category is related to the overall mission problem
and does not capture explicitly the motion aspects. For
example, a mission objective could be to reach a landing
zone while avoiding no-fly zones, then wait for supplies to
be loaded on the aircraft, and finally return to the base, all
while minimizing fuel and exposure to hazards. The mission
however does not specify how the vehicle should move to
avoid obstacles, which trajectories should be followed, and
what their costs are. The second category deals with the
motion of the vehicle and is concerned with faster time scales
that involve dynamic obstacles and threats. The separation

The authors are with United Technologies Research Center. This work
was supported by United Technologies Research Center under the Au-
tonomy initiative. Email: {DingX, EnglotBJ, PintoA, SperanA,
SuranaA}@utrc.utc.com.

between the mission and motion levels hints at the possibility
of creating a hierarchical planning system that can solve the
entire planning problem more tractably and efficiently.

The major problems to be addressed in building such a
system are (1) the abstraction of motions at the mission
level including costs and probabilities; (2) the management
of contingencies that may arise at any level of the hierarchy.

The main objective of this paper is the definition of
a general framework for managing complex missions in
cluttered, partially known environments. Such a framework
should 1) support optimization with respect to multiple costs,
2) handle logical/spatial/temporal constraints, and 3) deal
with contingencies at multiple temporal and spatial scales.

There has been a growing interest in solving these types
of problems. Recently, some work has been focused on
combining high-level mission specifications with sampling-
based motion planners, such as rapidly-exploring random
trees (RRT/RRT*) or probabilistic roadmaps (PRM/PRM*).
See [1] and references therein for a description of sampling-
based planners. Karaman and Frazzoli [2] proposed to com-
bine µ-calculus with RRT or PRM, starting by incrementally
building transition systems representing feasible trajectories
and then retaining transition systems that satisfy specifica-
tions leveraging µ-calculus model-checking. However the
representation of mission specifications using µ-calculus can
be cumbersome and unnatural to human operators. More
recently in [3] and in [4] Linear Temporal Logic (LTL)
specifications were instead used for mission specification,
in combination with sampling-based planners. However, for
large environments these approaches may not scale well,
since graph algorithms must be carried out in the product
space between the low-level roadmap and the automata
corresponding to the specification. In [5] the authors also
combined LTL specifications with motion planning based
on navigation functions. Although the method enables the
generation of paths that satisfy specifications, navigation
functions are known to scale badly in high dimensional
configuration spaces.

The hierarchical architecture described in this paper is,
from a conceptual point of view, similar to 3T [6] and
RCS [7] architectures where deliberative planners reside
at higher layer and reactive planners are implemented at
the lower layer. The architecture proposed in this paper
explicitly adds mechanisms to incorporate complex world
model defined through an ontology and comprising a knowl-
edge base. Also, the type of planners considered in this
paper (both at the deliberative and reactive levels) are not
only designed in a way that enable mission execution at
multiple scales but they are designed to ensure an effective
contingency management. Furthermore, compared to more
recent work [8], the architecture and planners, described in

this paper, are as domain independent as possible and can
deal with various sources of uncertainty.

In order to enable scalability, expressiveness of the mission
specification language, multiple objectives and uncertainty,
we previously proposed [9] a hierarchical planning frame-
work in which a large and obstacle-rich environment is
partitioned into cells. Detailed path planning is abstracted
into motion primitives between cells. High-level actions
are then delegated to a path planner that determines the
detailed path. This structure accommodates environments
whose size are out of reach for traditional path planning.
More specifically, in [9] the mission level plan is modeled
as the optimal policy of a Constrained Markov Decision
Process (CMDP) where actions are motion primitives, while
the path planner at the lower level is a PRM. The CMDP
planner handles most of the complexity (though at an abstract
level) which includes optimizing a primary mission objective
under different types of constraints: behavioral specifications
as a temporal logic formula and expected cost constraints
such as threat exposure. The planning framework described
above, while promising, does not address the problem that
the abstraction may not be consistent and sound in-between
layers, and needs to be augmented to manage contingencies
at multiple temporal and spatial scales.

This paper is an extension of the hierarchical planning
framework described in [9] both from the functional and
architectural perspectives. Specifically, the hierarchical plan-
ning framework proposed in this paper presents the following
contributions: 1) incorporates multiple objectives at different
planning layers, thereby being able to handle a rich class
of missions – this also requires extending the PRM path
planning algorithm to handle multiple objectives as a multi-
objective PRM (MO-PRM); 2) facilitates (re)planning under
dynamic, uncertain and unanticipated events; and 3) provides
a flexible architecture that enables reusability of modules
across mission domains. We show a specific instance of our
framework where a CMDP planner is used at the mission
level, and a MO-PRM planner is used at the motion level.
However, in principle this hierarchical framework can use
different planners for both levels (e.g., a graph planner in
the higher level and an optimal control solver in the lower
level). The resulting planning system is tested in a realistic
simulation scenario where an agent is tasked with a mission
in a large urban threat-rich environment subject to dynamic
contingent events.

II. HIERARCHICAL PLANNING FRAMEWORK

A. Mission Model

The types of missions we consider include scenarios in
which a vehicle navigates in a highly cluttered environment,
such as a city, with partial knowledge of obstacles, e.g. from
satellite images or GIS databases. Regions of the map may
be labeled with properties such as Pickup, Dropoff and
SafeRegion. The desired mission might require visiting
these regions in a certain priority order, remaining in a region
for a certain time, etc. Bounds on the probability of satis-
fying the desired behavior are also provided as part of the
specification. For example, the mission must be completed
with at least 70% probability. Other mission objectives might

include exposure to threats, which depends on the threat level
assigned to the regions in the map. Therefore, a planning
system for these missions must explore the trade-off between
mission success probability and threat exposure. However,
the exact position of threats in a region is only known at
run-time when the vehicle is in the proximity of the region
to be traversed. Thus, the planning system should be able to
relate the overall probability of mission success to local path
segments or, in other words, to operate at different spatial and
temporal scales.

Although prior information about the environment is usu-
ally available, it is also uncertain and becomes outdated much
faster than the mission completion time due to the dynamic
nature of the environment. This suggests that solutions in
which a very detailed plan is generated for the entire mission
starting from the initial conditions may not be suitable.

B. Planner Structure

The planner is comprised of an upper layer, responsible
for the mission level management and human interaction,
a middle layer that handles the motion planning and a
bottom layer that generates feasible control actions from
trajectories or waypoints. In the upper and middle layers
the planners solve multi-objective optimization problems.
These are posed as optimization problems with a primary
cost and a set of secondary costs as constraints from which
we can obtain the full Pareto solution, as discussed further
in Section III. The multi-objective optimization problems
are developed such that the primary cost functions and
some of the constraints/secondary costs “overlap” between
layers. This means that costs/constraints are functions of the
same variables, although at different scales. Namely, mission
related costs/constraints at the upper layer are abstractions
of the corresponding motion costs/constraints at the middle
layer. Although the idea of using a hierarchical planner is not
new, the way we propose to structure the planners and their
interaction is novel and, as we will clarify in the sequel, it
offers the required flexibility and robustness to tackle realistic
missions in large dynamic environments.

A specific instantiation of the hierarchical planning frame-
work we propose is shown in Figure 1 . At the top, Level
I, we have the high-level mission planner based on CMDP,
at Level II we have the low-level planner based on MO-
PRM and at the Level III a standard trajectory-tracking or
waypoint-following controller. At each layer there are well
defined planners and their composition must be done through
consistent model abstractions. This specifically requires that
states and actions are consistent between layers. We further
detail this in Section III. Note in Figure 1 we show the
“overlap” between the costs at various levels. We will show
how these are chosen for a case study in Section V.

There are many advantages of the proposed framework.
First of all it enables reusability of planners. Of course,
the degree of reusability and domain independency will be
higher at the upper layers and decreases as we move down
in the hierarchy to the trajectory tracking/waypoint following
controller. Secondly, the proposed framework also captures
the natural presence of different time and spatial scales.
The high-level planner deals with the overall mission whose

Level III

Level I

Level II

S

D

C
o

st
 /

 C
o

n
st

ra
in

t
o

ve
rl

ap

B
et

w
e

e
n

 L
ev

e
l I

 a
n

d
 II

C
o

st
 /

 C
o

n
st

ra
in

t
o

ve
rl

ap

B
et

w
e

e
n

 L
ev

e
l I

I a
n

d
 II

I

Fig. 1. Overview of the proposed hierarchical multi-objective planner.
Level I corresponds to the mission level planner, Level II to the motion/path
planner and Level III to a trajectory tracking/waypoint following controller.

domain is generally abstracted into a coarse representation
over a large time-scale. The low-level planner determines
an obstacle-free path in a subset of the domain providing
waypoints at a shorter time scale. This is in general beneficial
as, when solving a multi-objective PRM, the search space
grows with the number of secondary costs and does not scale
well for large scenarios. Further, it also enables contingency
management at multiple spatial and temporal scales.

C. Contingency Management

Contingency management is the problem of recognizing,
assessing, and responding to unanticipated events or con-
ditions that impact plan execution [10]. These events could
occur both externally, to the planning system, or be internally
generated. External events include vehicle system/payload
degradation/failure, changes in weather conditions, unex-
pected changes in battle space (e.g. pop-up threat), changes
in mission objectives, etc. Internal events could arise due
to inability of a lower level planner to execute commands
issued by a higher level planner. Often external contingency
events lead to internal contingency events, for example
due to pop-up threats the lower level path planner cannot
meet constraints on exposure commanded by the high-level
planner.

Contingency management involves two main steps: 1)
identification/assessment and 2) planning/replanning. The
first step requires monitoring of actions and keeping the
world model up-to-date. This enables the detection of both
unanticipated changes in the world and effects of action
execution. These aspects are further discussed in Section IV
including architectural implications. For the second step one
can consider both deliberative/reactive approaches. Delibera-
tive planners account for unanticipated events at the planning
stage, while a reactive planner triggers replanning during
execution. The replanning problem can be decomposed into
plan validation and plan repair. Plan validation verifies if the
current plan being executed remains feasible and optimal
under contingency. If the plan is no longer valid, plan repair

is required. A planner can be reactive to certain events
and deliberative about others, and this is a design choice.
Below we discuss some design guidelines in context of the
hierarchical planning framework introduced above, and argue
why hierarchical structure facilitates it.

First, we note that the contingency events described above
typically occur at different temporal and spatial scales and
have different impacts on mission execution. In a friendly
environment, pop-up threats will occur less often compared
to a more hostile environment. The knowledge of temporal
and spatial scales of the contingency events and their impact
on system performance and safety has a profound effect
on how contingencies can be managed. For example, if the
events are likely to occur frequently or can have great impact
on mission execution, a deliberative approach to planning can
be taken, compared to reactive planning, which is suitable for
events which rarely occur and have low impact on mission
performance. On the other hand, contingencies that occur
locally (such as discovery of an unknown obstacle along a
planned path) can be managed by a lower-level path planner,
whereas changes in weather conditions (global change) can
be managed by a higher-level planner. Thus, hierarchical
planning structure naturally provides a mechanism for sepa-
ration of concerns without making any single planning layer
overly complex.

Secondly, we argue that from a planning perspective the
different external contingency events in the physical world
can be mapped to a few classes of internal contingency events
such as NoGo (command cannot start, pre-condition is not
met), Timeout (execution time for command exceeds a
given threshold), ConstrViolated (goal can be reached
but constraint is violated) and OffGoal (execution of com-
mand resulted in a state of the world which is different from
intended effect of the action). Thus, rather than developing
contingency management on a event by event basis, one can
develop a planning/replanning approach by focusing on these
few classes, with obvious benefits.

As mentioned above, the proposed planner requires over-
lap between the costs and constraints at different levels. This
not only ensures consistency between the various planners
but also enables contingency handling at multiple scales.
Indeed, if a contingency emerges at one layer, one can
recognize two possible outcomes. In the first case, the
contingency is detected and managed at the same layer
at which it emerges. In that case the system will incur a
higher cost but no constraints will be violated. This cost will
be used by the higher layer to determine the deterioration
of performance, e.g., of the mission or trajectory tracking
capabilities. In the second case, the contingency is detected
but it cannot be handled by the same layer where it occurs.
This will result not only in a higher cost but also one
or multiple constraint violations. The lower-lever violation
is reported to higher-level layers that will compute a new
policy based on this information. Note that a higher layer
will not only be informed of the violation, but also its
intensity (quantitative amount by which the constraint was
violated) thus enabling better re-planning. We will illustrate
such aspects of contingency management in a case study in
Section V.

III. LAYERS: MISSION AND MOTION PLANNERS

A. High-level CMDP Mission Planner

In this paper, we use a labeled (and finite) multi-objective
Markov Decision Process (MDP) or Constrained MDP
(CMPD) developed in [9] as the finite model for the high-
level planner. Here, we briefly review this CMDP planing
framework, for details we refer the reader to [9]. The
policy M for this model is one that minimizes expected total
primary cost function subject to constraints derived from
other cost functions:

min
M∈M

JMg0 (M), subject to

JMgi (M) ≤ ci , i = 1, . . . , N

PrMM(φ) ≥ pφ , (1)

for a given set of mission constraints ci ∈ R+, i = 1, . . . , N
and pφ ∈ [0, 1]. Here, M is space of all polices for the
MDP M, JMgi is expected total cost for cost function gi,
g0 is the primary cost function and gi, i = 1, · · · , N are
secondary costs. In addition to standard costs functions such
as fuel consumption, threat exposure, etc, the labeled CMDP
framework also allows one to capture mission specification
defined by temporal logic formulas such as Linear Temporal
Logic (LTL). The last constraint PrMM(φ) in (1) pertains
to probability of satisfying logic formula φ being greater
than a desired probability pφ. In this paper we restrict to
syntactically co-safe LTL (scLTL) formula (see [11], [12] for
details) for which CMDP solution approach was developed
in [9]. This approach uses a dual MDP representation and
produces an optimal policy as a solution of a linear program
(LP). Unlike, MDP optimal policies, the CMDP optimal
policies lie in the class of randomized stationary policies.
Additional details of the solution approach can be found
in [9].

B. Low-level MO-PRM Path Planner

We implement high-resolution path planning locally to
realize the state transitions of the MDP. The local planning
problem is also a multi-objective problem. Continuous multi-
objective path planning in two and three dimensions has been
achieved by gradient descent, paired with sampling of the
Pareto front to identify feasible solutions in the presence
of added constraints [13]. Genetic algorithms were applied
to multi-objective path planning in [14] and [15]. Multi-
objective planning over configuration space roadmaps was
considered in [16]. Given such a roadmap, a number of
dynamic programming based methods may be used for multi-
objective optimization, see [17], [18], [19]. To achieve real-
time planning in high-dimensional spaces, RRTs have been
adapted to plan under task constraints, leveraging both the
rejection of infeasible samples and projection of samples
onto constraint manifolds to obtain a feasible solution [20].
Rejection sampling in belief space to satisfy constraints on
robot collision probability was proposed in [21].

In this paper we combine the PRM algorithm, which
constructs a random graph that maps the collision-free con-
figuration space, with a fast multi-objective graph search [22]
to identify paths that lie on the Pareto front, leading to the

Multi-Objective PRM (MO-PRM). This approach enables the
re-use of a roadmap for searches under different objectives
and constraints. A PRM is initially constructed using a
Euclidean distance metric to compute edge weights among
neighboring nodes. An additional set of edge weights is then
computed according to a secondary objective function.

A search is performed over an expanded graph in which
each layer contains the nodes of the PRM at a specific level
of secondary cost. This representation requires secondary
costs to be quantized; the resolution can be tuned to suit the
needs of the application. Connections among nodes of the
expanded graph represent feasible transitions from one cost
level to another. Forcing primary costs to be non-negative, a
natural outcome under a Euclidean distance metric, permits
the expanded graph to be searched using Dijkstra’s algorithm
for primary-optimal paths that achieve specific levels of sec-
ondary cost. Requiring secondary costs to be strictly positive,
which we leverage in our application of the method, ensures
that accumulated secondary cost will increase along every
step of the path. An efficient upward sweep is possible in
this case, which yields worst-case complexity of O(|N |2|B|),
where |N | is the number of nodes in the original PRM
and |B| is the total number of cost layers, see Algorithm
1 of [22], which is captured as the fourth step of .

The upward sweep method does not require the explicit
construction of the expanded graph, but it does require the
selection of a start node or terminal node for which the
optimal cost-to-come or cost-to-go is stored and updated for
every PRM node, at every secondary cost level, over the
course of the search. We implement the search by selecting
a start node s and storing the cost-to-come associated with
every node at every secondary cost level. As a preprocessing
step, two unconstrained Dijkstra searches over the original
PRM are performed with respect to the primary and sec-
ondary cost functions. Let Ui ∈ U and Vi ∈ V be node
i’s optimal costs-to-come with respect to the primary and
secondary objectives, respectively. Let Ũi ∈ Ũ and Ṽi ∈ Ṽ be
the primary and secondary costs associated with Vi and Ui,
respectively. After preprocessing, the algorithm then sweeps
upward from one level of secondary accumulated cost to
the next, and the outcome of each iteration is W b

i ∈ W , the
primary cost at each node i in the PRM subject to maximum
allowable secondary cost b ∈ B. If b < Vi, then node i cannot
be reached feasibly and W b

i = ∞ . If b ≥ Ṽi, then node i
can be reached using the unconstrained optimal solution and
W b
i = Ui. The search will gradually recover the Pareto front

of unique paths that lie on the secondary cost levels between
Vi and Ṽi. The procedure for a single query is summarized
in Algorithm 1, with start s, goal g, primary and secondary
cost functions f(i, j) and g(i, j). In a representative query, it
is assumed that a maximum allowable secondary cost bcon is
posed, with maximum realizable secondary cost b∗ dictated
by the discretization scheme.

IV. INTEGRATION AND ARCHITECTURE

In this section we provide details regarding the software
implementation of the hierarchy that uses planning algo-
rithms outlined in the previous sections. The intent of this
section is also to highlight that integrating planning algo-

Algorithm 1 W b∗
g ←MOPRM(s, g, f(i, j), g(i, j), bcon, B)

G← BuildPRM(s, g, f(i, j))
(U , Ṽ)← Dijkstra(s,G, f(i, j))
(V, Ũ)← Dijkstra(s,G, g(i, j))
for b ∈ B, i ∈ N do

if (Ui <∞) ∧ (b ≥ Vi) then
if b = Vi then

W b
i ← Ũi

else
if b < Ṽi then

W b
i ← LocalSearch(b, i, G,W)

else
W b

i ← Ui

end if
end if

else
W b

i ←∞
end if

end for
W b∗

g ← RetrieveOptimalPath(W, bcon, g)
return W b∗

g

Ontology
Action

schemata

Objects.xml K.act

Se
n

so
rs

Object
database

Knowledge
base

P
e

rc
e

iv
e

r

Query/
Response

Command/Report

M
D

P

P
e

rc
e

iv
e

r

MDP Executor

CMDP
Planner

Policy
validator

Action
Monitor

CMDP Agent

MO
Planner

Plan
validator

Traject.
Monitor

P
R

M

P
e

rc
e

iv
e

r

Road
map

Executor

MO-PRM agent

Mission command

Trajectory-tracking
or Waypoint-following

controller

LE
V

EL
 I

LE
V

EL
 II

LE

V
EL

 II
I

Fig. 2. Hierarchical planner architecture.

rithms into a hierarchy to operate in a dynamic world where
contingencies may occur requires a considerable amount of
effort. The planning algorithms are only two of the 14 blocks
in the software architecture (see Figure 2) .

The main features of the architecture presented in Figure 2
are flexibility, re-usability, and run-time adaptability. The
resulting mission management system needs to operate in
a dynamic environment. Thus, there is a continuous stream
of data entering the system through sensors. We use the
generic term sensor to denote any block that retrieves data
related to objects of interest in the world such as GPS/IMU
for navigation, map updates, non-cooperative entities and
their location etc. Data is processed to create an internal
representation of the external world: the world model. A
perceiver denotes a block that interacts with the world model.
The first perceiver on the left of Figure 2 transforms sensor
data into the world model.

To be flexible and reusable across missions, the world
model is divided into a generic database of objects (a pro-

cedural representation) and a knowledge base (a declarative
one). The object database contains a set of objects O. Each
object o ∈ O has a type τ(o) and a list of properties P (o).
A property is a reference to another object in the database, a
list of references to other objects, or a primitive quantity (i.e.
Boolean, double etc.). The knowledge base is specified using
a multi-sorted First Order Logic and contains the definition of
types, predicates, functions and action schemata that define
the capabilities of an agent. The knowledge base holds a
working memory of facts (i.e. ground predicates) that are
true about the world. The object database and the knowledge
base are kept consistent1

and are in fact configured using the same Ontology. The
ontology only defines object types (e.g. Helicopter) and
properties (e.g. a Helicopter has a position). A separate file
contains the description of actions that an agent is able to
execute. This action description is called action schemata.
Using a concept similar to the one presented in [23], an
action a has a name name(a), a list of typed parameters
V (a) = (v1, . . . , vn), a precondition pre(a) which is a
conjunction of predicates over the variables V (a) defining
when the action is enabled, and a list of effect specifications
eff(a) = {(pi, effi)}. An effect specification is a pair
where the first element denotes the probability of the effect to
occur, and the second element is a conjunction of predicates
over the variables V (a) describing the changes in the state
of the system after the action is executed (see Section V for
an example of the action schemata).

The probability values associated with state transitions are
in general functions of the parameters of the action schema.
However, in more complex situations, probabilities depend
on details that are not exposed to the level of the planning
domain simply because modeling such details would un-
necessarily complicate the planning problem. For example,
consider the case where the transition probabilities depend on
the threat distribution in the environment. Such distribution
is not exposed at the level of the knowledge base. However,
such information is stored in the object database which
has a more detailed representation of objects and specific
algorithms can be used to annotate such probabilities. Thus,
we leave the flexibility of not specifying the probabilities
for each effect and defer their computation to an annotation
step that runs only before such information is needed (i.e.
to create a probabilistic transition system). Action schemata
provide an implicit representation of the state space reachable
by the system.

The hierarchical planning architecture is shown on the
right of Figure 2. Each agent shares a common architecture
where the planning algorithm is only one of the components
used at run-time. Agents may have their own internal rep-
resentation of the world. For example, the high-level agent,
which uses the CMDP planner, requires a MDP represen-
tation of the world model. A perceiver block is needed to
read the common world model and generate such internal
representation. An executor block manages the run-time

1A specific interface between the two makes sure that the set of constants
in the knowledge base is equivalent to the set of objects in the database,
and that the working memory of the knowledge base is consistent with the
values of the properties of objects in the object database.

decisions that need to be made. For example, when a new
mission command is received by the high-level agent, the
executor runs the planning algorithm and starts its execution
one action at a time. Each action is monitored to check
for any contingency and negative reports from the low-level
agent. Moreover, changes in the world model propagate into
changes to the MDP. Such changes may render the current
policy unable to satisfy mission constraints. A plan validator
is used to perform such checks and trigger re-planning.

The perceiver block of the CMDP agent is a key compo-
nent. It needs to query the current state of the system from
the world model and unfold the implicit representation of the
state space provided by the action schemata into an explicit
representation, namely a MDP with additional information
such as transition costs and state labels. The perceiver block
continuously checks for changes in the world model and
keeps the MDP updated. Its main computational steps are the
following: (1) Query the current state from the knowledge
base; (2) Starting from the current state, perform a full AND-
OR graph search using the action schemata also retrieved
from the knowledge base; this generates the state and action
space of the MDP, and all possible transitions between states;
(3) Assign probabilities to the AND transitions and costs to
the OR transitions of the generated states (such assignments
are called procedural attachments); (4) Assign labels to the
states of the generated graph (these labels correspond to the
ones used in the LTL specification of the mission). Step (2)
is the most computationally intensive but can be efficiently
implemented. For example, in the case study in V, the MDP
containing 2000 states and 30000 actions was generated in
6 seconds).

The MDP generated by the perceiver is used by the CMDP
planner to find a policy that satisfies the mission require-
ments. Once the policy is generated, its execution starts. The
executor block of the CMDP agent selects the optimal action
according to the policy, say action a, and uses an action
map to send the action to the lower level planner. Notice
that in our system, the lower level agent is a MO-PRM as
described in previous section. This agent accepts only move-
ment commands. Let Move(Charlie1, HeliPad, Zone1)
be a movement command. Such command will be associated
with constraints coming from the costs attached to the
MDP. The MO-PRM agent will query the object database to
retrieve the geometric properties of position HeliPad and
Zone1 and will start running the MO-PRM algorithm to
find a set of paths that successfully execute the command.
Several contingencies may arise as described in Section II-C.
Such contingencies are handled by the CMDP agent either
by selecting the next best action according to the policy
(deliberative contingency management), or by re-planning
(reactive contingency management).

The architecture in the framework proposed in this paper is
designed so that all blocks in Fig. 2 are domain independent
except the perceivers. Therefore, if the mission scenario is
changed, only the ontology, the action schemata and the
procedural attachments need to be altered, but the rest of the
agents remains untouched and need not be re-implemented.

V. CASE STUDY

A. Mission Scenario

We select a section (10km by 10km) of the city of
Chicago [24] as our urban environment, which must be
navigated by an autonomous helicopter. The map is a subset
R ⊂ R3 which includes of a set of buildings (obstacles)
Oi ⊂ R, i = 1, · · · , Nb each of which can be represented as
a polytope. Let O = ∪i=1,...,Nb

Oi. The complement of O in
R is then the free space where the agent can navigate.

We assume that there are threats associated with some
buildings with indices Ithreat ⊆ {1, · · · , Nb}. Each threat
i ∈ Ithreat has a value ei ∈ R indicating the severity of
the threat. Given a state trajectory in R3 from start state
ps = (xs, ys, zs) to goal state pg = (xt, yt, zt), we define
a threat function T(s,t) to quantify the exposure along the
trajectory as:

T(s,t) =
∑

i∈Ithreat

[∫∫∫ t

s

ei dx dy dz

‖ps − pg‖2

]
(2)

weighed by threat severity ei. We assume in this case
study that all trajectories are executed at constant speed.
Consequently, the threat exposure function, given in (2),
penalizes both the proximity to each threat and the duration
of exposure. While traversing along a given path, the vehicle
can be lost due to threat exposure. In this case the vehicle
will be assigned a proposition Disabled. The mission task
is to minimize the total path length to arrive at a goal region
while keeping the probability of being disabled by threats
below a certain bound.

B. States and Actions construction

To construct the mission abstraction, we follow the ap-
proach from [9]. The map is partitioned into cells, and
the obstacle free boundary along cell is referred to as the
facets. With this abstraction, at the CMDP planner level,
navigation through the environment reduces to traversing
from cell to cell through their facets. In a state s, an action
a ∈ A(s) corresponds to traversing a cell from a facet to an
adjacent facet while remaining within the cell. As detailed
in Section IV, the CMDP abstraction described above can be
automatically constructed by specifying the ontology of the
mission scenario and the action schemata. In this case, the
ontology is used to establish the notions of points, regions
(obstacles), facets, cells and the helicopter. For example,
the type facet can be specified by the following ontology
description.
<Type t_name="Facet">

<LowerLeft t_name="Point"></LowerLeft>
<UpperRight t_name="Point"></UpperRight>
<SharingSameCell t_name="Facet"

multiple = "true"></SharingSameCell>
<Goal t_name="bool"></Goal>

</Type>

This ontology specifies that a facet is defined by two points
(LowerLeft and UpperRight). Also there is a relation
(SharingSameCell) between a facet f with a set of other
facets, which correspond to the set of facets that share the
same cell with f . Finally, there is a boolean function which
indicates if a facet is assigned a proposition Goal.

The action schema to construct the CMDP model is as
follows.
Move(Helicopter:agent, Facet:start, Facet:end)
pre : CurrentFacet(agent,start) and

SharingSameCell(start,end)
and not Disabled(agent)

effect: [p1] not CurrentFacet(agent,start)
and CurrentFacet(agent,end)

[p2] not CurrentFacet(agent,start)
and CurrentFacet(agent,end)
and Disabled(agent)

[p3] CurrentFacet(agent,start)

This action schema specifies that each action (go from a
facet start to end) has three possible outcomes : 1) vehicle
finds a path and reaches end without being disabled by
threats; 2) vehicle finds a path and reaches end and disabled
by threats; 3) vehicle fails to find a path and thus stays at the
same facet start. The entire state and action space of the
MDP is generated automatically by the perceiver, applying
the algorithm described in Sec. IV.

C. Costs and Probabilities

For the low-level MO-PRM planner, every action is char-
acterized by a primary and secondary cost. In this case study,
the primary cost of an action is the length of the path that
executes it, and the secondary cost of an action is the threat
exposure along the path as per Eq. (2). Prior knowledge of
the world is used to derive the expected values of these costs
through an offline learning phase. During the offline learning
phase, the MO-PRM planner is issued queries for every facet-
to-facet pair that may be executed during mission execution.
A representative state is selected for each facet, and the
query from start state s to goal state t is issued multiple
times (i.e., as a Monte-Carlo trial) to assess the frequency
with which a collision-free path can be determined by MO-
PRM. From this, we can compute the probability of finding
a path using the path planner for any facet-to-facet pair i, j;
we denote this probability as PrMO−PRM(i, j). Moreover, the
expected primary and secondary costs for each facet-to-facet
pair are denoted as glength(i, j) and gthreat(i, j), and are also
computed from the Monte-Carlo trials. The expected length
and threat exposure are set to the mean value of Ũt and Ṽt
observed among collision-free queries, respectively.

For the CMDP mission planner, every action is charac-
terized by the transition probability P (s, a, s′), where the
state s = (f, d) is represented by a facet f and d ∈ (1, 0)
(Disabled or not). The transition function P (s, a, s′) can
be constructed in a straightforward fashion using PrMO−PRM
learned in each cell, as described in detail in [9]. Similarly,
we abstract costs defined at the MO-PRM level to define a
cost function gfuel(s, a) for fuel consumption:

gfuel((i, 0), ai,j) = Cglength(i, j)PrMO−PRM(i, j)

+S(i)(1− PrMO−PRM(i, j)),

where C is a constant exchange ratio between distance and
fuel, S(i) is the expected cost of not finding a path for pair
(i, j) and thus idling at facet i and ai,j denotes transition
from facet i to an adjacent facet j.

Consistency between the costs computed by the MO-
PRM planner and the costs and transition probabilities of
the CMDP planner is critical for proper functioning of the

hiearchical framework, including contingency management,
as discussed in Sec. II.

D. Mission Specification and Results
The mission task can be written as the scLTL formula: φ =

¬DisabledU Goal. For the mission planner, we formulate
the following CMDP problem:

min
M∈M

JMgfuel(M), subject to

PrMM(φ) ≥ pφ,

Note that the optimal policy will drive the vehicle to actively
avoid threat areas such that the mission success probability
is guaranteed to be above pφ.

Choosing pφ = 0.65, and the cost function gfuel as de-
scribed in Section V-C, a sample of complete paths generated
by the hierarchical planning framework (i.e. CMDP planner
interacting with MO-PRM) is shown in Figure 3a.

E. Contingency Management
During online mission execution, the expected threat level

gthreat(i, j) as computed in the offline phase based on
prior knowledge is used as the maximum allowable threat
exposure when a planning query is sent to the MO-PRM
planner. This ensures that our abstraction is consistent and
the probabilistic guarantees made by the CMDP planner
are met during mission execution. However, if MO-PRM
cannot find a collision free path satisfying the constraint, the
low-level executor issues a contingency report (and newly
perceived expected threat) to the CMDP planner. The higher
level plan validator will validate the current plan with respect
this information, and mission-level replan will be issued if
the plan is no longer valid (i.e., constraint can no longer be
met). Note that such contingency falls into the category of
ConstrViolated as discussed in Sec. II-C.

To test this scheme, we introduced random pop-up threats
during the mission execution. A sample path as generated by
the hierarchical planning framework with all pop-up threats
indicated is shown in Figure 3b. Note that in several cases the
low-level MO-PRM could not find valid paths with constraint
met, thus high-level re-plans were carried out. Moreover, an
example of the path (as well as the Pareto front) produced
by the MO-PRM, in the presence of a contingent threat, is
shown in Figure 3c.

VI. CONCLUSIONS
In this paper, we describe a novel hierarchical planning

framework for mission planning and execution in uncer-
tain and dynamic environments, supporting optimization
with respect to multiple costs at different layers, logi-
cal/spatial/temporal constraints, and can deal with contingen-
cies at multiple temporal and spatial scales. As part of this
framework, we proposed a multi-objective PRM to deal with
multiple constraints. In order to effectively implement our
framework we also propose a generic knowledge-based ar-
chitecture which is flexible, re-usable and independent from
a specific application domain. We demonstrate a specific
instance of our framework using a CMDP planner at a high-
level and a MO-PRM planner at the lower level, and explain
how the resulting hierarchical planning system is used by

Fig. 3. (a) Map of environment with a regular cubic disjoint partition. Selected buildings in the map are associated with a certain level of threat. Threat
rich buildings are indicated with color red (high threat) and black (zero threat). The path followed by the vehicle when the mission is completed without
pop-up threats is shown in solid blue. (b) The path followed by the vehicle when the mission is completed with pop-up threats is shown. Pop-up threats
are light blue large dots in the map. We randomly introduced threats to random cells in the environment, and in particular a cluster of threats in cell (4,2).
(c) Pareto front for a query issued to the MO-PRM planner. Threat exposure of each path is depicted along a color gradient from red (minimal length) to
blue (minimal exposure). We also show that an unanticipated pop-up threat, in light blue, influences the Pareto front.

an agent to plan/replan for a LTL mission specification in a
large urban threat-rich environment under dynamic uncertain
conditions.

ACKNOWLEDGEMENTS

The authors would like to acknowledge William M. Sisson
II who has developed part of the software that enabled the
implementation and testing of the hierarchical planner in
simulation. We also thank Prof. Alexander Vladimirsky for
helpful conversations on multi-objective path planning.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[2] ——, “Sampling-based motion planning with deterministic µ-calculus
specifications,” IEEE Conference on Decision and Control, pp. 2222–
2229, 2009.

[3] C. I. Vasile and C. Belta, “Sampling-based temporal locial path
planning,” 2013, http://arxiv.org/abs/1307.7263.

[4] L. I. R. Castro, P. Chaudhari, J. Tumova, S. Karaman, E. Frazzoli,
and D. Rus, “Incremental sampling-based algorithm for minimum-
violation motion planning,” 2013, http://arxiv.org/abs/1305.1102.

[5] M. Guo, K. Johansson, and D. Dimaragonas, “Motion and action
planning under LTL specifications using navigation functions and
action description language,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2013.

[6] R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack, “Experi-
ences with an architecture for intelligent, reactive agents,” Intelligent
Agents II Agent Theories, Architectures, and Languages. Lecture Notes
in Computer Science Volume, vol. 1037, pp. 187–202, 1996.

[7] J. Albus, T. Barbera, and C. Schlenoff, “Rcs: An intelligent agent
architecture,” in Proc. of 2004 AAAI Conference: Workshop on In-
telligent Agent Architectures: Combining the Strengths of Software
Engineering & Cognitive Systems, 2004.

[8] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in IEEE International Conference on Robotics
and Autonomation, 2011, pp. 1470–1477.

[9] X. Ding, A. Pinto, and A. Surana, “Strategic planning under uncertain-
ties via constrained markov decision processes,” in IEEE International
Conference on Robotics and Automation, May 2013.

[10] J. L. Franke, A. Hughes, S. M. Jameson, J. G. Clark, and R. J.
Szczerba, “Holistic contingency management for autonomous un-
manned systems,” in Proceedings of the AUVSIs Unmanned Systems
North America, 2006.

[11] A. Bhatia, L. Kavraki, and M. Vardi, “Motion planning with hybrid
dynamics and temporal goals,” in Decision and Control (CDC), 2010
49th IEEE Conference on. IEEE, 2010, pp. 1108–1115.

[12] O. Kupferman and M. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, no. 3, pp. 291–314, 2001.

[13] I. Mitchell and S. Sastry, “Continuous path planning with multiple
constraints,” in Proceedings of the IEEE International Conference on
Decision and Control, vol. 5, 2003, pp. 5502–5507.

[14] P. Vadakkepat, K. Tan, and W. Ming-Liang, “Evolutionary artificial
potential fields and their application in real time robot path planning,”
in Proceedings of the Congress on Evolutionary Computation, vol. 1,
2000, pp. 256–263.

[15] O. Castillo, L. Trujillo, and P. Melin, “Multiple objective genetic algo-
rithms for path-planning optimization in autonomous mobile robots,”
Soft Computing, vol. 11, no. 3, pp. 269–279, 2007.

[16] S. LaValle and S. Hutchinson, “Optimal motion planning for multiple
robots having independent goals,” IEEE Transactions on Robotics and
Automation, vol. 14, no. 6, pp. 912–925, 1998.

[17] P. Hansen, Bicriterion Path Problems. Heidelberg, Germany: Springer
Verlag, 1980, pp. 109–127.

[18] J. Jaffe, “Algorithms for finding paths with multiple constraints,”
Networks, vol. 14, pp. 95–116, 1984.

[19] E. Martins, “On a multicriterion shortest path problem,” European
Journal of Operations Research, vol. 16, pp. 236–245, 1984.

[20] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” International
Journal of Robotics Research, vol. 30, no. 12, pp. 1435–1460, 2011.

[21] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2011, pp. 723–730.

[22] R. Takei, W. Chen, Z. Clawson, S. Kirov, and A. Vladimirsky,
“Optimal control with budget constraints and resets,” CoRR, vol.
abs/1110.6221, 2011.

[23] H. L. S. Younes and M. L. Littman, “Ppddl1.0: An extension to pddl
for expressing planning domains with probabilistic effects,” Carnegie
Mellon University, Tech. Rep. CMU-CS-04-167, 2004.

[24] “City of Chicago - GIS data,” http://www.cityofchicago.org/city/en/
depts/doit/supp info/gis data.html, 2013.

http://www.cityofchicago.org/city/en/depts/doit/supp_info/gis_data.html
http://www.cityofchicago.org/city/en/depts/doit/supp_info/gis_data.html

	I INTRODUCTION
	II Hierarchical Planning Framework
	II-A Mission Model
	II-B Planner Structure
	II-C Contingency Management

	III LAYERS: MISSION AND MOTION PLANNERS
	III-A High-level CMDP Mission Planner
	III-B Low-level MO-PRM Path Planner

	IV Integration and Architecture
	V CASE STUDY
	V-A Mission Scenario
	V-B States and Actions construction
	V-C Costs and Probabilities
	V-D Mission Specification and Results
	V-E Contingency Management

	VI CONCLUSIONS
	References

