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Abstract

Analysis and design methods for stochastic hybrid dynamical systems are presented. Analysis
methods include reachability analysis as well as statistical approaches. System refinement and
decomposition are explored as possible approaches to deal with complexity. Findings show that
analysis of this class of systems is not scalable. A promising approach is demonstrated which
relies on the automatic construction of decentralized control systems using desirable properties as
constraints. The synthesized system does not require to be analyzed thereby cutting the analysis
effort. This approach is promising but for now limited in its use.
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Executive Summary

Complex systems span several domains including mechanical and electrical parts as well as software
controlling them. These types of systems exhibit a wide variety of time-scales: software reaction
time can be as low as micro seconds while some mechanical components have reaction times spanning
minutes. The external environment changes according to its own time scales. All these sub-systems
(including the environment) are seldom known perfectly. Even the software components may imple-
ment randomized algorithms thereby behaving probabilistically.

These systems are known as Stochastic Hybrid Systems (SHS). They are a mix of discrete state
changes occurring at some instants in time, such as state changes in a state machine, and dynamics
which is governed by differential equations that model the behavior of the environment and of
the electro-mechanical parts. Noise, failures, and uncertainty in the behavior of the environment
make the system stochastic. As representative example, this study provides a prototypical thermal
management system for aerospace applications.

Assuming that the model accurately represent the system, a useful verification tool takes the
system description as input and provides answer to probabilistic queries such as the probability of
a certain event to occur. The event can be defined in terms of a software state to be reached, or the
value of a certain continuous variable to exceed a critical threshold. The assumption we stated at
the beginning of the paragraph is strong since probability distributions of system parameters and
statistics of random processes affecting the dynamic evolution of the system are typically difficult
to obtain. Thus, one has to avoid undertaking the complexity of an accurate computation of such
probabilities if the models are not accurate to begin with. When such probability distributions are
not known, non-determinism is perhaps a better way of modeling the possible outcomes of an action
in the system.

Stochastic analysis is a useful tool for designers to check properties of these types of systems. The
designer is in charge of assembling the system and defining the control algorithms to achieve a certain
level of performance. Another useful tool takes a partial description of the system (perhaps just the
mechanical and electrical components) and a desired level of performance, and computes a control
architecture that satisfies the requirements. This is referred to as the synthesis problem. If such
tool existed, then it would be unnecessary to verify that the SHS model satisfies the requirements,
simply because they were taken into account as constraints (and therefore automatically satisfied).

From the theoretical standpoint, the analysis of SHS models in the general case is an undecid-
able problem. This study is concerned with the practical complexity of the analysis and synthesis
problems. Several techniques are reviewed and algorithms implemented to assess how memory and
computational limitations constraint the complexity of the systems that can be analyzed. In the
sequel, we will use the term analysis to refer to computation methods given that we do not assume
any particular structure of the SHS. Analysis can be done using two classes of methods: based on
reachability computation and on simulation. Methods based on reachability analysis scale poorly
with the dimension of the state space, meaning the number of continuous variables that describe
the state of the dynamical system. We have observed a practical limitation (on a single processor
machine) to four continuous variables. Of course, this limit depends on dynamics of the system (i.e.
the form of the differential equations), and on the statistics of the uncertainty. Simulation based
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methods scale better but with some limitations and drawbacks. These methods cannot deal with
system that exhibit non-determinism which is considered an important modeling feature for the rea-
sons mentioned above. Moreover, the answers provided by these methods have a certain probability
of being wrong.

To overcome the complexity barrier, the design flow can be structured in such a way that the
system is first analyzed using abstract models, and then refined into more detailed models. The
analysis conducted at the abstract level can be used to derived partitioned requirements for the sub-
systems. Each sub-system can then be analyzed against the derived requirements. This method,
however, requires the ability to derive probabilistic requirements for the sub-systems which come in
the form of a probabilistic input-state-output relation. The second challenge is to check that the sub-
systems “probabilistically” refines those requirements. Both problems are hard. This study provides
some approximate methods to solve this problem. Conducting the analysis at multiple levels could
in principle allow to verify system with many components as long as group of components can be
conservatively modeled by one abstract component.

Given the complexity of the analysis problem, a synthesis approach has been investigated. De-
signing systems that are correct-by-construction can potentially cut the analysis effort altogether.
The problem of deriving a decentralized control algorithm for a given mechanical system that can
satisfy some probabilistic safety properties is addressed in this study. The performance of the control
system and its optimal architecture are affected by the underlying computation and communication
platforms. Their join optimization seems to be a hard problem. However, it is possible to divide the
synthesis problem into two steps by building a suitable abstraction of the hardware platform. The
control synthesis problem can therefore be addressed first. The result is an optimal decentralized
control architecture and a set of requirements for the underlying computation and communication
platforms. The design of the hardware platform can then be performed as a second step. The control
optimization problem can be formulated as a stochastic optimization problem. Given the sparsity of
the structure of the problem, it is possible to use efficient solvers even for large systems. However,
some restrictions have to be placed on the type of SHS to be optimized. The more restricting ones is
that transitions can only be triggered by time. Extensions are possible but need to be investigated
further.
Summary of findings and recommendations. The Stochastic Hybrid System model of computa-
tion is very expressive and capable of capturing dynamical systems with discrete modes of operation
evolving under uncertain conditions. Analysis of these models is hard and does not seem to be a
viable method for systems of large size except when their structure leads to simplifications. The way
in which a system is modeled can also render the analysis task complex. When possible, modelers
should limit the number of variables used and should simplify the dynamics of the system by using
discrete modes instead. Simulation methods scale better but they do not provide the same guaran-
tees of other analysis tools, and do no allow non-determinism in the model. Correct-by-construction
design could potentially eliminate the need for complex analysis, but a general approach for system
synthesis as yet to appear.

Further investment is recommended in the following two areas:

• Modeling. The same system can have several representations. Moreover, domain experts are
typically able to define views of the system tailored to the verification of particular properties
with the same accuracy of the full model. There is a quest for verification engineers with
strong domain knowledge for the development of analyzable models. Conservative abstraction
methods for SHS models is also suggested as area of investment.

• Synthesis. Correct-by-construction design is a promising approach. The generality and scala-
bility of this approach depends on the availability of a library of “control templates”, namely
parametrized control blocks that can be composed into a decentralized control algorithm and
that lead to tractable stochastic optimization problems. A library of such templates which is
expressive enough to address realistic control problem is an interesting area of investment.

7
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Chapter 1

Abstract model of a thermal
management system

We model a thermal management system at a high level of abstraction. The purpose of the model
is to enable verification of stochastic properties related to fuel temperature. We model the thermal
management system of a prototypical aircraft and we also build context models such as the class of
possible missions to be flown, the weather conditions, and the heat loads from other sub-systems. We
include several sources of uncertainty such as the mission profile and the inaccuracy of the models
due to abstraction. We use a mix of dynamical and steady state models which lead to a system
of differential-algebraic equations. The system has multiple modes of operations corresponding to
discrete states such as ”cruising” or ”failing”. We capture these type of systems as Stochastic Hybrid
Systems (SHS).

1.1 System description

We model the thermal management system of a prototypical aircraft executing a certain class of
missions. The objective of the study is to determine the fuel temperature distribution over time from
take-off to landing. The temperature distribution is not only affected by the type of mission, but
it is also sensitive to weather conditions, and these two elements of the system are both uncertain.
We classify uncertainty into two categories: parametric uncertainty and dynamic uncertainty. An
example of dynamic uncertainty is the mission profile which determines the inputs to the aircraft sub-
systems. These inputs, such as commands sent to actuators, are stochastic processes. Parametric
uncertainty is associated with the value of a variable in the system that does not change over time.
Such value does not change either because it is indeed a constant, or because its dynamics is very
slow compare to the time scale of interest. We consider the outside temperature to be an uncertain
parameter rather than a stochastic process because we assume that the temperature will not change
over the time span of the mission.

Figure 1.1 shows the high level model of the system under study. The mission profile drives the
dynamics of all the aircraft sub-systems (the electric power system (EPS), the thermal management
system (TMS), the environmental control system (ECS), the engine, and the flight control system).
For example, the mission profile determines the power requirements at each point of the mission
which in turn determines the heat dissipated by the EPS. Many other variables are directly derived
from the mission requirements such as fuel consumption and heat dissipated by the ECS and by the
engine. The weather condition impacts the ability to reject heat and therefore has an impact on the
dynamics of the fuel temperature.

Figure 1.2 shows the dependency of some of the critical variables of the system. The mission
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High-level block diagram
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Figure 1.1: High-level model of the system under study.

profile generates a certain power requirement profile w(t), thrust profile f(t), velocity profile v(t),
and altitude profile h(t). The mission profile can be modeled at different abstraction levels. At the
lowest abstraction level, the details of each component are included in the system, such as detailed
models of the dynamics of the aircraft. However, a system level design activity necessarily requires
to abstract from low level details and use models that are accurate enough only to make high-
level decisions. For example, the dynamics of the aircraft can be abstracted into a noisy velocity
variable, while the (x, y) position of the aircraft might not be relevant. The altitude must instead be
considered because it has a direct impact on the outside air temperature and, therefore, on the ability
to reject heat using ram air. The uncertainty introduced in the model can also be seen as the result
of the abstraction. For example, the uncertainty introduced on the velocity variable is not meant
to indicate noisy measurements, but rather the speed variation due to several factors such as small
maneuvers, turbulence etc. Notice that this variations may also be irrelevant in determining fuel
temperate and therefore one may even abstract such uncertainty and consider the aircraft traveling
with constant speed in each mission phase.

The EPS system provides power to the actuators and to other sub-systems in the aircraft such
as radars and avionics. Power is delivered by the generators which are characterized by a certain
efficiency ηG. The heat generated by the EPS depends on the efficiency of the generators and the
efficiency ηC of other components (such as power converters) that are present in the aircraft1.

The altitude and the velocity of the aircraft impact the air temperature TA and air density dA.
This is important because air is used to extract heat from the fuel. The weather condition also has
an impact on TA as well as on the heat that needs to be rejected by the TMS (due to kinetic effects).

The fuel temperature in the tank depends on the amount of the fuel level which is directly
proportional to the thermal capacity of the fuel system. The amount of heat that can be extracted
from the fuel system and transferred to the environment using ram air depends on the air density
and on the velocity of the aircraft. Finally, the amount of fuel consumption impacts the fuel flow
rate in the fuel system and therefore in the heat exchangers, thereby affecting the temperature of
the fuel. This is because the temperature of the return fuel is higher for lower fuel flow rates.

1.2 Mission profile

The first component that we model is the mission profile which serves as the context for the rest of
the system. Several standard profiles of missions are available in literature [42], ranging from short
to long missions which include refueling. We select a standard mission which does not include any

1We have omitted other heat loads such as the engine in Figure 1.1 for brevity.
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Figure 1.2: Dependencies among the variables and parameters of each sub-system.

complex segment. However, we will be able to capture a class of mission by including uncertainty
into the model. We also note that the model of computation that we use (i.e. Stochastic Hybrid
Systems [36, 19]) is very general and allows to model a wide variety of mission profiles.

We decompose a mission in the following phases or modes of operation.:

• Taxing. In this mode, the aircraft is on the ground and ram air cannot be used as heat sink
(we assume that there are no fans on the aircraft). The amount of time spent on the ground
is not known at design time and must be modeled by a random parameter.

• Take-off. The aircraft moves to this mode and starts accelerating on the ground until enough
speed is gained to start the ascending phase.

• Ascending to a target altitude. The aircraft climbs at a constant rate until a target altitude
is reached. The altitude can be assumed a random variable. However, there is little difference
in terms of air temperature and density for a wide range of altitudes as can be seen later in
Section 1.3.

• Flying at constant altitude. After the target altitude is reached, the aircraft starts flying at
that altitude for the duration of the mission which is also assumed to be a random variables.
In this mode, the power requirement, and the thrust might be considered random processes
simply because the exact maneuvers that the aircraft will do are not known.

• Optional refueling for longer mission that can be executed a certain umber of times:

– Descending to intermediate altitude for refueling. The aircraft descends to an intermediate
altitude to fly in formation with a tanker.

– Refueling. This is a mode where the flying conditions are very stable with little uncer-
tainty. The tanker and the aircraft fly in formation maintaining a constant speed and
altitude.

– Ascending to target altitude. The aircraft climbs back to the target altitude to continue
the mission.

• Descending. After complete the mission, the aircraft starts descending towards the landing
zone. This phase ends when an appropriate altitude is reached.

10
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Figure 1.3: Mission profile of a mission without refueling.

• Decelerating. The aircraft reduces its speed at a constant altitude. The speed is decreased to
a value considered appropriate for landing.

• Landing. This is the landing phase where speed is finally reduced to zero.

• End of mission. The end of mission corresponds to the engines being shut off.

Figure 1.3 shows the stochastic hybrid system representing a simple mission without refueling.
Each state represents one phase of the mission and it is characterized by a set of differential algebraic
equations that defines the way in which altitude h, velocity v, thrust f and power requirement w
change over time. Variables δ is used to encode time. It is a special case of a class of variables
that are referred to as clocks. Clocks have constant derivative, and time is a special case where the
derivative is equal to one. To avoid cluttering the figure, we only show the transitions among the
states and the dynamics of the clock δ, while we omit the dynamics of the other variables – that
are explained later in this section. The aircraft remains on the ground for a certain amount of time
δ̃t which is a random parameter. During taxing, the altitude is at the sea level, and the velocity is
approximately zero. The aircraft requires some level of thrust ft and some level of power wt that
are both considered constant.

The take-off phase is characterized by a constant altitude, a constant acceleration of the vehicle
and constant thrust and power requirement. When the aircraft reaches a velocity vtoff , the mission
switches to a phase where the aircraft starts ascending. When a target altitude htg is reached, the
mission changes phase to a state where the aircraft flies at constant altitude. During this phase
thrust, power requirement and velocity change according to a set of stochastic differential equations.
After a random amount of time t̃l, the aircraft starts its descending phase and switches to the
deceleration phase when the altitude reaches a landing altitude hld. Finally, the aircraft lands and
ends the mission when the ground is touched. The end-of-mission (eom) state is an accepting state
of this automaton.

The maximum total take-off weight of the aircraft is approximately 50, 000 kg. We consider that
the aircraft is initially full of fuel. The dry mass of the aircraft is 10, 400 kg, and the total fuel
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Mission phase Heat load (kW ) Power requirement (kW )
Taxiing 18.44 84.1
Take-off/Decelerating/ 26.63 84.4
Landing
Ascending/Descending 27 83
Flying 20 76.4

Table 1.1: Heat load and power requirements for a prototypical UAV.

capacity is 8, 400 kg. The heat the power requirement in the different phases of the missions are
shown in Table 1.1.

The take-off thrust is 17, 300 kg. We can now define all the parameters in the mission automaton
as follows:

• Taxiing : even if the aircraft is idling, a substantial thrust is required to keep the engine
running. The thrust is needed to keep compressing air into the engine. The amount of thrust
is assume to be 25 % of the take-off thrust. Thus, the thrust requirements in this phase is
ft = 4, 325 kg and the power requirement is wt = 84.1 kW . We assume that the time spent in
this mode of operation is uniformly distributed between 5 and 15 minutes.

• Take− off : the take-off thrust is ftoff = 17, 300 kg, i.e. full thrust (we are not considering
after-burning). The power requirements is wtoff = 84.4 kW . Velocity increases according to

the following equation: v̇ =
f−fdrag

m with fdrag = cd · ρ · A · v2, where the drag coefficient
cd = 0.048, ρ is the air density and A is the wing area which we consider to be 28 m2. The
take-off velocity is vtoff = 240 km/hr. Whether this parameters will all be used depends on
how they are going to affect the fuel temperature.

• Ascending : we assume that the thrust requirement is equal to the take-off thrust. The velocity
equation is similar to equation (??) but we need to consider an additional term due to gravity
fg = −g · sin(π/2 − α) where α is the climb angle which we assume to be π/3. Also, the
air density is going to be a function of the altitude. We assume that the target altitude is
htg = 10, 000 m. The total power requirement during climb is 83 kW .

• Flying : several models are possible for this phase. The simplest model considers velocity and
altitude to be constant. A more refined model consists in a system of stochastic differential
equations that captures the uncertainty in the types of maneuvers performed in this mission
phase. A good approximation is to break this phase into several sub-modes each capturing a
particular maneuver. For an example of this type of model, one may refer to the maneuver
automat approach [50].

• Descending : we assume a descend rate of hd = 300 m/s, and thrust fd = ft. The total power
requirement is 83 kW . The landing altitude is hld = 200 m.

• Decelerating : the aircraft decelerates to a landing speed equal to the take-off speed. During
this phase the altitude of the aircraft is maintained constant at hld.

• Landing : The total power requirement is 83 kW .

• End− of −mission : In this mode all the variables are set to zero.

1.3 Modeling the weather conditions

The weather conditions can be modeled by an uncertain system of algebraic equations linking the
altitude to the air density and to the temperature which is also affected by the speed of the aircraft.

12



Approved for Public Release, Distribution Unlimited.

Layer Base Altitude, hn (km) Lapse Rate, λn (K/km)
0 0 −6.5
1 11 0
2 20 +1.0
3 32 +2.8
4 47 0
5 51 −2.8
6 71 −2.0
7 84.85 −

Table 1.2: Description of various layers in the weather model.

This models is used to compute the actual temperature of the ram air on the heat exchangers.
Depending on the weather condition (which is a random parameter), the air density and temperature
have a different distribution. These distributions can be computed by fitting historical data.

To model the air density and temperature as functions of altitude, we use models similar to the
U.S. Standard Atmosphere models [2]. These models provide definitions for atmospheric tempera-
ture, density and pressure over a wide range of altitudes. For these models, the gas which comprises
the atmosphere is assumed to be an ideal gas. The key variables of interest to us are:

• h = Altitude

• T = Temperature

• p = Pressure

• g = Acceleration due to gravity = 9.8m/sec2

• R = radius of earth = 6356.766km.

• T0 = sea level temperature = 15.00C

• p0 = sea level pressure = 101, 325N/m2.

The model comprises a series of six layers, each defined by a linear temperature gradient also
called lapse rate. A brief description of the layers is given in table 1.2.

A positive lapse rate λn > 0 indicates that the temperature increases with height. The temper-
ature distribution within layer n is given by:

T = Tn + (h− hn)λn. (1.1)

Using the ideal gas law equations and the equations for hydrostatic equilibrium, the pressure distri-
bution within layer n is given by the expression

p

pn
=

(
1 +

(h− hn)λn
Tn

)−g/(λnR)

. (1.2)

For isothermal layers (λn = 0), the above expression reduces to

p

pn
= e−(h−hn)g/(RTn). (1.3)

The above equations link the altitude to the pressure and temperature of the air that is used for the
fuel-air heat exchangers on the aircraft.
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Figure 1.4: Model of the thermal Management System.

1.4 Modeling the Thermal Management System

The first abstract model we consider is shown in Figure 1.4. In this first model we consider the flow
rates at steady state or slowly varying. Also, the volume of the fluid in this circuit changes relatively
slowly. If this assumption does not hold, then it is possible to better approximate the behavior of
the system by using a series of models at constant flow rate, and capturing the transient effect in
the transitions among modes.

A pump is used to push fuel from the fuel tank into the fuel circuit. The heat produced by
the environmental control system, the electric power system and the engine is absorbed by the fuel
through heat exchangers that we abstract in this high level model (see Section 6.1 for a refined
model of this system). Part of the fuel is used by the engine while the rest returns to tank. Before
entering the tank, the fuel is cooled to an appropriate temperature by an Air/Fuel heat exchanger
that uses RAM air. The variables of interest in this model are the total fuel level in the tank, the
fuel flow rate, and the fuel temperature.

Using the nomenclature in Figure 1.4, we model the system using the following equations:

• Ṁ = ṁin − ˙mout = −ṁf , M(0) = M0. This equation links the engine fuel consumption ṁf

to the total fuel mass M (where M0 is the total fuel mass at the beginning of the mission).

• ˙moutcf (Tf − Tout) = HL where HL is the total heat rate from the heat loads on the aircraft.
In this equation cf is the specific heat of the fuel.

• ṁincf (Tf − Tin) = HS where HS is the heat rate that the sink is able to reject.

• The last equation links the fuel temperature to all the other quantities. Notice that the fuel
temperature is Tout:

ṁincfTin − ˙moutcfTout =
d

dt
(McfT )

where T (0) = T0 is the initial temperature of the fuel. The expression in explicit form is as
follows:

ṁincfTin − ˙moutcfTout = ṀcfT +McpṪ
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The heat rate HS depends on the velocity of the aircraft, the air density and the air temperature.
The fuel rate ṁf can be derived from the thrust and from the thrust specific fuel consumption

(TSFC) of the engine. For example, one representative engine consumes 0.7 lb/lbt/hr (pounds per
pounds of thrust per hour) without afterburner, and 2 lb/lbt/hr with afterburner.
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Chapter 2

Analysis Techniques for Discrete
Time Stochastic Hybrid Systems

The hybrid system model of computation combines the continuous time (CT) and the discrete time
(DT) models. A system is characterized by a discrete state ranging over a discrete set of values
(or modes), and by vectors of continuous states (one vector for each mode). In each mode, the
continuous states evolve according to the solution of a system of differential equations (which can be
different for each mode). A hybrid system can change mode depending on the value of the continuous
states (also called guard condition). When changing mode, say from m1 to m2, the initial state for
the set of differential equations in m2 is determined by a reset relation between the values of the
continuous variables in m1 and in m2. The guard condition and the reset together define the jump
condition. For a review of hybrid system models and tools refer to [20]. This formalism is powerful
and general and it is able to capture systems where digital controllers interact with physical systems.

Given a hybrid system and a set of possible initial condition for its states (both discrete and
continuous), an interesting problem is reachability analysis which entails computing the set of all
reachable states according to the jump conditions and to the dynamics in each mode. This problem
is decidable for linear hybrid automata (see [8, 35]). HyTech [35] is a verification tool for linear hybrid
automata where the reachable set of states is made finite by using a polyhedral representation. For
nonlinear hybrid automata the problem is not decidable. However, it is possible to find a conservative
approximation of the original hybrid system as a linear hybrid automata (see for example [28]).

Hybrid systems can be extended to include uncertainty. Each mode can be associated to a system
of stochastic differential equations capturing the effect of noisy dynamics. Jump conditions can be
extended by including the probability of switching from one mode to another as function of the state
variables. Also, the reset condition can be extended to a probability distribution over the initial
conditions of the system of stochastic differential equation in the target mode. The probabilistic
reachability analysis problem [7] asks for the computation of the probability distribution over the
hybrid state space at a given time starting from an initial probability distribution at time zero.
Techniques to solve this problem can then be used to compute the probability of entering into an
unsafe set of states.

Computational techniques for solving the probabilistic reachability analysis problem can be di-
vided into two categories: the ones based on a Markovian approximation of the stochastic hybrid
system [6, 49, 48], and the ones bases on simulation (or statistical methods) [57, 16]. Another
interesting approach is based on Lyapunov-like arguments and is known as the barrier certificate
method [47].

In this chapter we first define the type of stochastic hybrid system that we will use in the rest
of the study and we will then present the algorithmic implementation of some of the techniques
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mentioned in this introduction.

2.1 Markov modeling of Stochastic Hybrid Systems

One possible approach for analysis of stochastic hybrid systems is to use finite state Markov chains.
Such techniques have been exploited in the work of Dellnitz ([25]) and Froyland [29] that have used
set-oriented methods to model continuous dynamical systems. The basic idea in these methods is
to partition the domain of the continuous variables (referred to in the sequel as the continuous state
space) into a finite number of sets. To construct the finite state Markov model, the index of each
set is identified as the state of the Markov chain. Transition probabilities between different states of
the Markov chain are interpreted as the probability of a typical point in one set to move to another
set under the constraint on the dynamics of the system. We use the same approach here, except
that we take into account the hybrid nature of the dynamics, namely the jump conditions and the
different dynamics for each mode of the hybrid system.

Other approximation techniques have been also recently developed by Abate et al. [5, 26] and are
based on Markov Set-Chains [33]. This work focuses on providing error bounds between the original
system and the Markov Chain approximation but places some restrictions on the smoothness of
the probability distributions. In our first attempt to address the probabilistic reachability analysis
problem, we do not place restrictions either on the dynamics of the system or on the probability
distributions of the stochastic processes. This complicates the analysis task and does not allow to
compute exact error bounds1.

The rest of this Section is structured as follows. In Section 2.1.1, we provide a definition for
Discrete Time Stochastic Hybrid Systems. In Section 2.1.2, we define certain transfer operators
that describe the evolution of probability distributions on the hybrid state space. In Section 2.1.4,
we discuss numerical methods for approximating the transfer operators. In 2.1.5, we discuss two
examples of DTSHS for which we use our computational methods.

2.1.1 Definition of Discrete Time Stochastic Hybrid Systems

We first define state space models for discrete time stochastic hybrid systems (DTSHS). We represent
the discrete state space by Q. To keep the explanation of the main idea simple, we consider a
continuous state in Rn. In Section 2.3.1 we will remove this assumption and in Section 4.1 we will
further extend the model to encompass inputs, outputs and hierarchy. The state space of the hybrid
system can then be defined as follows:

S = Q× Rn = ∪i{qi} × Rn. (2.1)

The following definition formalizes the state space description of a discrete time stochastic hybrid
system.

Definition 1. The state space model for a discrete time stochastic hybrid system is a collection
H = (Q, Init, T, L,R) where

• (modes) Q := {q1, q2, ...., qm} with m ∈ N, represents the discrete state space;

• (Initial uncertainty) Init : B(S)→ [0, 1] is an initial probability measure on S.

• (Flows) T is a stochastic map that describes the dynamics of the continuous variables x ∈ Rn
in each mode. The dynamics of the continuous variables in mode qi is given as

x(n+ 1) = T (qi, x(n), ξi(n)), (2.2)

1However, the procedure we follow allows to compute error variance empirically.
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where ξi(n) is an i.i.d process with distribution Ni.

• (Switching function) S is a switching probability function that gives the probability of switch-
ing between various modes. S(x, qi, .) is a probability measure on the discrete space space Q.
i.e., S(x, qi, qj) gives the probability of the system to jump from mode qi to mode qj given the
value of the continuous state x.

• (Reset Maps) R is a stochastic map that probabilistically resets the values of the continuous
state variables when a switch occurs from mode qi to mode qj. The reset is given as

x(n+ 1) = R(qi, qj , x(n), ηj(n)), (2.3)

where ηj(n) is an i.i.d process with distribution Wj.

The execution of a state space model for the discrete time stochastic hybrid system over a finite
time horizon [0, N ] is defined below [5].

Definition 2. Consider the state space model for a DTSHS H = (Q, Init, T, L,R). An execution
of the model over a time horizon [0, N ] is given by the following algorithm:

Set k = 0 and extract a value (q(0), x(0)) according to the distribution Init
while k < N do

Extract a value q(k + 1) according to the probabiity distribution S(x(k), q(k), .).
if q(k + 1) = q(k) then

Extract a value ξi(k) according to the distribution Ni. Then compute

x(k + 1) = T (q(k), x(k), ξi(k)), (2.4)

{i is the index of the mode q(k).}
else

Extract a value ηj(k) according to the distribution Wj. Then compute

x(k + 1) = R(q(k), q(k + 1), x(k), ηj(k)), (2.5)

{j is the index of the mode q(k + 1).}
end if
k → k + 1

end while

2.1.2 Propagation of measures for Discrete Time Stochastic Hybrid Sys-
tems

The initial probability measure of a DTSHS needs to be propagated over time according to its
hybrid dynamics. To propagate the probability measure we define transfer operators for the flow
maps and for the jumps. With a slight abuse of notation, we use the same symbols for measures
and probability distribution functions.

Definition 3. Flow Transfer Operators: For the flow corresponding to each mode qi, the propa-
gation of measures is described by the Frobenius-Perron operator corresponding to the map T (qi, ., .).
This is the unique operator [Pi] such that

∫
A

[Pi]µ(x)dx = Eξi

∫
Rn

µ(x).χA(T (qi, x, ξi))dx

 ,
for all A ⊂ Rn.

(2.6)
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Note that if the probability measure at time k is given by µ(k), then the measure at time k + 1
is given as

µ(k + 1) = [Pi]µ(k). (2.7)

Note that eventhough the maps T (q(k), x(k), ξi(k)) are non-linear, the Frobenius-Perron operators
are linear operators, but infinite-dimensional. For more details on the theory of these transfer
operators, see [41].

Definition 4. Switching Transfer Operator: For the switching between the modes qi and qj, we
define the switching transfer operator given as

[Li,j ]µ(x) = S(x, qi, qj).µ(x). (2.8)

Definition 5. Reset Transfer Operators The change in measures due to probabilistic resets is
given by the Frobenius-Perron operator corresponding to the map R(qi, qj , ., .). This is given as

∫
A

[Mi,j ]µ(x)dx = Eηj

∫
Rn

µ(x).χA(R(qi, qj , x, ηj))dx

 ,
for all A ⊂ Rn.

(2.9)

Let Γ be a probability distribution on the state space of the hybrid system S. We define the
following sub-probability measures on the continuous space Rn.

µi(A) = Γ(qi, A), for i = 1, 2, ...m. (2.10)

Note that µi(Rn) ≤ 1. Hence it is a sub-probability measure. Also note that the probability of the
state being in the set A ⊂ Rn (irrespective of the mode), is given by

µ(A) =
m∑
i=1

µi(A). (2.11)

The evolution of the probability measure over the state S of the DTSHS H over a finite time-
horizon [0, N ] is given by the following algorithm:

Definition 6. Algorithm for Propagation of measures

Set k = 0 and set Γ0 = Init.
while k < N do

for i = 1, 2, ...,m do
Get the sub-probability measures.

µki (.) = Γk(qi, .) (2.12)

end for
for i = 1, 2, ...,m do
for j = 1, 2, ...,m do

Compute the sub-probability measures

[ρki,j ]
− = [Li,j ]µ

k
i (2.13)

Reset the sub-probability measures [ρki,j ]
−

ρki,j = [Mi,j ][ρ
k
i,j ]
−. (2.14)
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end for
end for
for i = 1, 2, ...,m do

Compute the sub-probability measures [µk+1
i ]−.

[µk+1
i ]− = µki (.)−

m∑
j=1

[ρki,j ]
−(.) +

m∑
j=1

ρkj,i(.) (2.15)

end for
for i = 1, 2, ...,m do

Compute (evolve sub-probability measures for one time-step by local flow)

µk+1
i = [Pi] [µk+1

i ]− (2.16)

Set Γk+1(qi, .) = µk+1
i (.).

end for
k → k + 1

end while

Description of the algorithm: The first step is to compute the probability ”mass” that exits
from mode qi to mode qj represented by the sub-probability measures [ρki,j ]

− given in (2.13). The

sub-probability measures [ρki,j ]
− need to be updated according to the reset map R. This is described

in Equation (2.14). Once this is done, we compute the sub-probability measures [µk+1
i ]− as obtained

by Equation (2.15). This step essentially substracts the mass that exited from mode i to other modes
and adds the mass that came in from other modes (after the reset). The next step is to propagate
the sub-probability measures [µk+1

i ]− according to the dynamics of the mode qi. This is given by
Equation (2.16).

2.1.3 Transfer operator for the hybrid state space

The evolution of the probability measures over the whole hybrid state space can be described using
a single transfer operator given as

Γk+1 = PΓk, (2.17)

where

Γk =


µk1
µk2
....
....
µkm

 , (2.18)

and the transfer operator P can be represented in block-operator form as

P =


P1M1,1L1,1 P2M2,1L2,1 ........ PmMm,1Lm,1
P1M1,2L1,2 P2M2,2L2,2 ........ PmMm,2Lm,2

........ ........ ........ ........

........ ........ ........ ........
P1M1,mL1,m P2M2,mL2,m ........ PmMm,mLm,m

 . (2.19)

Each block of the above operator is a composition of the various flow, switching and reset transfer
operators. The operator defined above represents in a more compact form the action for measure
propagation as described in the algorithm defined above in the previous section.
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2.1.4 Numerical approximation of Transfer Operators for Discrete Time
Stochastic Hybrid Systems

In [25], Dellnitz et al. describe set oriented numerical methods to construct finite dimensional
approximations for the Frobenius-Perron operator corresponding to a continuous dynamical system.
In this paper, we use the same techniques to construct approximations for the various transfer
operators defined in the previous section. In this approach, the dynamics is modeled by a finite
state Markov chain.

As described in [25], the transfer operator corresponding to a map T is constructed as follows.
The state space is partitioned into a finite number of connected sets {A1, A2, ...., An}. To form the
Markov model, each set Ai is identified with a state i of an n-state Markov chain. A n× n matrix
P is constructed, where the entry Pij is computed as

Pij =
m(Ai ∩ T−1Aj)

m(Ai)
. (2.20)

where m is the Lebesgue measure. The quantity Pij can be interpreted as the probability that a
typical point in Ai moves into Aj under one iteration of the map T . The quantity Pij is computed
by a Monte-Carlo approach. One randomly selects a large number of points {a1, ...., aN} ⊂ Ai
and sets Pij ≈ #{a ∈ {a1, ...., aN} : T (a) ∈ Aj}/N . We construct such approximations for each
one of the Flow Transfer Operators ([Pi]) and Reset Transfer Operators ([Mi,j ]). There is no need
to explicitly construct the Switching Transfer operator as its action is known exactly in terms of
the switching probability function. Remarks. The matrix representation of the transfer operator
could in be directly used for measure propagation. This requires to compute the quantity Pij for
each state i of the finite Markov Chain approximation even if state i is actually never reached by
the dynamics of the system. When the number of state of the approximation is small, one may
use this method and further improve memory and computational requirements by using a sparse
matrix representation. However, constructing Markov models for a given specification of a hybrid
system is computationally intensive. To give some idea of the computational complexity, consider a
hybrid system with m discrete states and N continuous variables, each sampled using G intervals.
Then, the total number of states for the Markov chain approximation is O(m.GN ), and the size of
the finite dimensional Frobenius-Perron operators is O((m.GN )2). We show in Section 2.3 how the
computation of transfer operators can be interleaved with measure propagation to avoid considering
those parts of the state space that are never reached. Finally, we point out that the probabilities
Pij are average probabilities and that their computation can be simplified when the flow and reset
maps have particular forms (see for example Section 2.3.4).

One application of Markov models is to propagate probability measures for the state of the hybrid
system as described in the previous sections. Another possible application is to use probabilistic
model checkers developed for Markovian models ([44, 38, 1]). Our software tool takes as input the
specification of a hybrid system and returns an approximate Markov chain model of the system.

2.1.5 Examples

In this section we present some simple examples of systems for illustrative purposes. This models
are meant to provide an overview of the use of DTSHS and how measures propagates through them
in the present of jumps.

Thermostat

The temperature dynamics of a thermostat regulated room can be modeled by a hybrid system. In
this example, the hybrid system has two modes corresponding to a heater being on and off. The
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dynamics of the temperature for these two modes are given as:

OFF(0) :x(k + 1) = x(k)− 0.25 + ξ(k) (2.21)

ON(1) :x(k + 1) = x(k)− 0.25 +H + ξ(k) (2.22)

where H is heat injected by the heater in the room at each sampling step. The switching probability
function for the system is defined as follows:

S(x, 0, 1) =


0 if x > xlmax
xlmax−x

xlmax−xlmin
if xlmin ≤ x ≤ xlmax

1 if x < xlmin

S(x, 0, 0) = 1− S(x, 0, 1)

S(x, 1, 0) =


0 if x < xhmin
x−xhmin

xhmax−xhmin
if xhmin ≤ x ≤ xhmax

1 if x > xhmax

S(x, 1, 1) = 1− S(x, 1, 0).

(2.23)

The reset map for all mode transitions is identity. i.e., there is no change in the continuous state
of the system after a mode transition. We set H = 0.5, xlmin = 48.0, xlmax = 52.0, xhmin = 58.0
and xhmax = 62.0. Figure 2.1 shows snapshots of the evolving probability measure at various times.
We denote with µ1 and µ2 the temperature probability distribution in the OFF and ON states,
respectively. The thermostat is initially in OFF and the temperature in the room is uniformly
distributed between 60 and 65.

Bouncing Ball

In this example, we consider a ball bouncing on the ground. The system has only one mode, but
there is a reset condition when the position of the ball goes below zero. When this even occurs, the
value of the velocity is reverse (i.e. the ball start going upwards). The reset map is stochastic to
capture effects of the uneven surface of the ball and of the pavement. The dynamics for the only
mode of the system is given as:

x(k + 1) = x(k) + v(k).∆

v(k + 1) = v(k)− g∆
(2.24)

where ∆ is the sampling rate. The reset map is identity when the position x(k) is greater than zero.
When x(k) is less than zero, the position and velocity are reset as

x(k + 1) = −x(k)

v(k + 1) = −cv(k) + η(k).
(2.25)

Figure 2.2 shows snapshots of the probability measure evolving according to the bouncing ball
dynamics with the stochastic reset. The position of the ball is on the y axis while the velocity is
on the x axis. Figure 2.2(c) shows the effect of resetting the velocity from a negative to a positive
value.

2.2 Simulation methods: Statistical Model Checking

In this section we review some of the simulation-based approaches to the verification of probabilistic
systems. These methods estimate the probability that a system satisfies a certain property by
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(a) Time,t=0 (b) Time,t=100

(c) Time,t=200 (d) Time,t=300

Figure 2.1: Snapshots at various times of the probability measures for the thermostat example with
probabilistic switching between the modes.
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(a) Time,t=25 (b) Time,t=75

(c) Time,t=125 (d) Time,t=175

Figure 2.2: Snapshots at various times of the probability measure evolving according to the bouncing
ball dynamics with a stochastic reset.
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running statistically independent simulations and checking if the resulting traces satisfy the property.
The result of checking the property is interpreted as a Bernoulli trial. Let φ be a property that can
be checked for satisfaction over finite simulation traces2. For each simulation of the system, let xi be
a random variable which is equal to 1 if φ is satisfied and 0 otherwise. We are interested in testing
whether the actual probability p (not known) that the system satisfies property φ is above or below
a certain threshold θ. This problem can be used using hypothesis testing where the null hypothesis
is H : p ≥ θ and the alternative hypothesis is K : p < θ. This problem is relaxed by introducing an
indifference region around the actual probability p. Let δ be the length of the indifference region,
then new hypothesis are H ′ : p ≥ ph = θ + δ/2 and K ′ : p < pk = θ − δ/2.

Consider now a certain number n of samples (i.e. simulations that have been used to check the
property) x1,...,xn. Checking wether the null hypothesis holds can be done by fixing a number c
(which needs to be determined) and checking if x1 + ... + xn ≥ c. Given this simple test, one can
compute the probability that the test accepts a false hypothesis. The actual probability that the
the sum of the n outcomes is less than or equal to c is:(

Pp,n,c =
∑c
i=0

nipi(1− p)n−i

)
This is the probability of accepting the alternative hypothesis. Thus, the probability of accepting
the the null hypothesis is 1− Pp,n,c. Consider now the following error probability bounds:

• α is the probability of accepting the null hypothesis when the alternative hypothesis holds.

• β is the probability of accepting the alternative hypothesis when the null hypothesis holds.

The pair (α, β) is called the strength of the hypothesis test. To have a test with such strength, the
following two constraints must be satisfied:

• Pp,n,c ≤ α for all p ≥ ph, meaning that the probability of accepting the alternative hypothesis
when the null holds is below α.

• 1 − Pp,n,c ≤ β for all p ≤ pk, meaning that the probability of accepting the null hypothesis
when the alternative holds is below β.

One can then find n and c that satisfy these two constraints. Ideally, one wants to minimize n (i.e.
the number of samples required). The resulting optimization problem is difficult to solve given the
non-linearity of the constraints, but approximations can be found. This simple test does not leverage
the information gather as the simulations are generated. In fact, if while running the simulations
one realizes that the number of times the property was verified is greater than c, then the test could
stop without having to generate all n tests.

An different approach is to develop a sequential test that leverages the results obtained by
previous checks. This technique is the Sequential Probability Ration Test (SPRT) [51]. The test
proceeds as follows. Let m denote the test number (or simulation run number) and let sm =

∑m
i=0 xi

be the number of times that the property is found to be true. The one can compute the following
ratio:

rm =
pk,m
ph,m

=
psmk (1− pk)m−sm

psmh (1− ph)m−sm

The nominator is the probability of having sm successes overm trials assuming that the probability of
success is pk, while the denominator is the probability of having sm successes over m trials assuming
that the probability of success is ph. One than accepts H ′ if rm ≤ RH and K ′ if rm ≥ RK (with
RH < RK). The problem is to find RH and RK so that the test has the required strength which is

2Examples of such properties are the ones expressed using Bounded Linear Temporal Logic.
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non-trivial. This technique has been used as the basis to develop Statistical Model Checking tools.
The method was first introduced by Younes et al.[54, 55].

A recent development based on Bayesian Hypothesis Testing is presented in [56]. The conditional
probability of xi given that p = u is:

f(xi|u) = uxi(1− u)1−xi . (2.26)

A key idea in this approach is that since p is unknown, it can be assumed to be a random variable u
whose density g(.) is called the prior density. We can compute the posterior density for the random
variable u using Bayes’ theorem given as:

f(u|x1, ..., xn) =
f(x1, ..., xn|u)g(u)∫ 1

0
f(x1, ..., xn|v)g(v)dv

. (2.27)

Note that since the variables xi are independent and identically distributed, the probability f(x1, ..., xn|u)
is given as Πn

i=1f(xi|u). The calculation above is repeated for an unknown number of simulations
until the mass of the posterior density within a specified small interval achieves a certain coverage
goal. The mean of the posterior density f(u|x1, ..., xn) can be used as an estimate of the real prob-
ability p. Note that the answer made to the hypothesis testing problem can be incorrect for a finite
number of simulation. But it is possible to bound the probability of generating an incorrect answer
to the hypothesis testing problem.

Remarks. Statistical approaches are appealing because they only require a simulation model
of the system and do not explicitly explore the entire set of reachable states. However, the model
cannot exhibit non-determinism which is used in practice to model behaviors which are not fulling
known. Some recent work address this problem [17, 4]. It is also important to mention that the
outcome of the hypothesis test may be wrong with some probability. Finally, the efficiency of the
method (in terms of number of samples required to complete the test) can be improved by using
smart sampling techniques such as Quasi Monte Carlo methods.

2.3 Efficient implementation of the reachability algorithm

In this section we present algorithms and data structures for an efficient implementation of the
conceptual algorithm presented in Section 2.1. In particular we discuss the discretization of the
hybrid state space, the encoding of the grid points, a data structure to store the reachable states
and an algorithm to compute the reachability graph and to propagate probability measures.

The algorithm described in Section 2.1 could be implemented simply by computing the transition
probabilities between different grid cells for a given discretization, and storing them in a sparse matrix
data structure. This transition matrix could then be used to perform matrix-vector multiplications
for the evolution of the probability distribution. Note that computing these transition probabilities
is an expensive step as we have to uniformly sample points within each cell of the discretization, and
compute the action of the flow and reset operators on each one of these points. However, many states
of the finite-state Markov chain approximation (or cells of the discretized space) are never visited
- hence making it unnecessary to compute the transition probabilities for parts of the state-space
corresponding to the cells that are never visited.

This motivated the development of an explicit reachability algorithm that learns the transition
probabilities on-the-fly while the initial probability distribution is propagated. The transition proba-
bilities are therefore computed only for those cells that have a non-zero probability of being reached.
Although the theoretical complexity of the algorithm does not change, the dynamics of the system
constraints the reachable state space considerably making the explicit reachablity analysis capable
of handling reasonably sized systems. In the following, we first discuss the encoding of the cells of
the partitioned hybrid state space. Then we discuss some data structures that are required for the

26



Approved for Public Release, Distribution Unlimited.

efficient implementation of the reachability algorithm. Finally we formally describe the reachability
algorithm.

2.3.1 Encoding the state space

Each mode qi is characterized by an invariant region Inv(qi) that for our models can be computed
as the conjunction of the complement of the guard conditions associated with the switching function
from mode qi to all other modes. The invariant gives information on the bounds of the variables in
each mode. In general, the invariant region is a subset of Rd(qi), where d(qi) is the dimension of the
continuous state space in mode qi. We limit our discussion to invariant regions that are orthotopes,
meaning products of intervals. The invariant orthotope is defined as follows:

Inv(qi) =
[
x

(i)
1,l, x

(i)
1,u

)
× . . .×

[
x

(i)
n,l, x

(i)
n,u

)
(2.28)

where we denoted by x
(i)
j,l and x

(i)
j,u the lower and upper bound of the j-th variable in the i-th mode,

respectively. To build a finite representation of the invariant region (and therefore of the LSHS) we

discretize each continuous state using a grid. For a mode qi, let G(i) = (g
(i)
1 , . . . , g

(i)
n ) represent the

grid, where g
(i)
d is the number if intervals for the d-th state. The length of each interval is computed

as follows:

l
(i)
d =

x
(i)
d,u − x

(i)
d,l

g
(i)
d

(2.29)

The j-th interval is defined as follows:

I
(i)
d,j =

[
x

(i)
d,l + (j − 1)l

(i)
d , x

(i)
d,l + jl

(i)
d

)
(2.30)

The discretization induces a new state space which is now finite and it is defined as:

Ŝ =
m⋃
i=1

{qi} × [1, g
(i)
1 ]× . . .× [1, g(i)

n ] (2.31)

Let s ∈ Ŝ be a state such that s = (qi, j1, . . . , jn). Then, we use the following notation: mode(s) = qi,

B(s) = (j1, . . . , jn) and H(s) = I
(i)
1,j1
× . . .× I(i)

n,jn
.

The finite state space is now encoded into a linear array for each mode. For a given mode, let
the following define the total number of discrete states in that mode:

n(i)
m =

D(qi)∏
d=1

g
(i)
d

The discrete linear hybrid state space is ŜL = ∪q∈Q{q} × [1, n
(i)
m ]. The encoding is implemented by

a function map : Ŝ → ŜL that given a hybrid state s ∈ Ŝ computes s′ ∈ ŜL as follows:

mode(s) = mode(s′) = q

B(s′)|1 = B(s)|D(q) +

D(q)∑
d=1

 D(q)∏
d′=d+1

g
(i)
d

 (B(s)|d − 1)

This mapping (which is a bijection) has low complexity because it requires a number of operations
equal to the dimension of the continuous state space which is generally small. The inverse mapping
has the same complexity. By using these two maps, we remove the need for having an explicit grid
loaded in memory. Each reachable state will only have an id corresponding to its linear encoding.
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2.3.2 Data structures for reachability analysis

The reachability analysis algorithm explores the set of reachable states. We will implement an
explicit algorithm which requires the definition of a data structure to maintain the states reached
during the execution of the algorithm. The algorithm executes two key operations:

• Given a state s, the set of states SR reachable from s need to be computed. We provide some
approaches to speed up this step later in this chapter.

• Given a new state s′, the algorithm needs to check if s′ has already been reached.

The basic data structure used to hold the reachable state space is a reachability graphRG(C,E, P )
where C is a set of vertexes, E is a set of edges and P : E → [0, 1] is a function that associates a
probability to each edge. A cell is a tuple c(s, µ) ∈ C such that s ∈ ŜL, µ ∈ [0, 1]2 representing the
probability of being in state s – the probability measure is a vector of two elements for efficiency
reasons as explained in in Section 2.3.3. Because we expect RG to be sparse, we use an adjacency
list representation

To check whether a state has already been reached is a frequent operation which needs to be
optimized. There are two methods that we have tested. The first method requires the use of a
bit matrix MV where each bit represents a possible state of the system. Given a state s ∈ ŜL,
MV [mode(s)][B(s)] is equal to 1 if s has been reached and zero otherwise. Using this auxiliary
data structure allows to check whether a cell C has been reached in constant time because the
matrix provides direct access to its elements. However, this matrix needs to be allocated for the
whole state space which turns out to be the main memory bottleneck. Thus, we decided to store
the set of vertexes C in a priority queue that is ordered according to the state s lexicographically.
This ordering guarantees O(log(|C|)) access time which is efficient even when the number of reached
states is of the order of millions. The memory requirement is only determined by the set of reachable
states.
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2.3.3 Description of the Algorithm

Algorithm 1: Reachability and measure propagation

Input: DTSHS H, N
Output: RG(Q,E, P )

1 k ← 0 ;
/* Initialize the reachable set */

2 Q← Init(H) ;
/* Qn contains the frontier of new reached cells */

3 Qn[0]← Q ;
4 while k < N do

/* i and in are the previous and current indices, respectively */

5 i← 1− kmod2, in ← kmod2 ;
6 Qn[in]← ∅ ;

/* for all new cell reached in the previous iteration */

7 forall the c(s, µ) ∈ Qn[i] do
/* Compute the local PF operator */

8 (S′, P ′)← LocalPf(s) ;
9 forall the s′ ∈ S′ do

10 c′ ← (s′, (0, 0)) ;
/* Add the newly reached cells to the queue if they have not been

reached already */

11 if c′ /∈ Q then
12 Q← Q ∪ {c′} ;
13 Qn[in]← Qn[in] ∪ {c′} ;

14 end
15 E ← E ∪ {(c, c′)} ;
16 P (c, c′)← P ′(s′) ;

17 end

18 end
/* Propagate the probability measure */

19 forall the c(s, µ) ∈ Q do
20 µ[in]← 0 ;
21 end
22 s forall the (c(s, µ), c′(s′, µ′)) ∈ E do
23 µ′[in]← µ′[in] + µ[i] · P (c, c′);
24 end

25 end

Algorithm 1 shows the details of the implementation of the reachability algorithm. At first, the
reader may recognize that the algorithm is based on a breath first search over the discrete state space.
Although this is the indeed the case, the computational and memory efficiency of the algorithm
depend on the implementation details which are hidden in this high level description. Moreover, the
graph is constructed during execution which requires to handle queues of newly discovered nodes.

We use pairs of probability measures for each cell and a pair of queues Qn. By using pairs we
avoid possibly expensive copy operations during the update of the queues and, most importantly,
of the probability measure. In fact, at each step, the new probability measure needs to be updated
according to the old value which would require saving the old value in a cloned data structure. Thus,
the update is done by using one element of the pairs in the odd iterations and the other element in
the even iterations.

The algorithm starts by initializing the queue of reached cells Q and the current queue of states

29



Approved for Public Release, Distribution Unlimited.

to be processed Qn[1] (i.e. new states found in the previous iteration) to the set of initial states with
a non-zero probability. This is done by function Init which computes the set of states S0 ⊆ ŜL
using the Init function of the DTSHS H.

Two indexes are generated at each iteration. The indexes of the queue containing the cells found
in the previous iteration i, and the index of the queue which will contain all the new states reachable
in one step in. For each cell in Qn[i], a function LocalPf computes a set of new states S′ ∈ ŜL with
associated probabilities P ′ (i.e. the probability of reaching state s′ ∈ S′ from s). Each new state is
added to the next queue Qn[in] and to queue Q. Finally, the edges of the graph and the associated
probability are also added to the reachability graph.

The second step in the algorithm propagates the probability measures. For each cell in the
reachability graph, probability mass is moved to the output cells according to the previous value of
the probability measure and to the transition probabilities P .

2.3.4 Further improvements

Dealing with clocks It is usual that hybrid system models have mode transitions that are enabled
by guards conditions on clock variables. Clock variables can be used to keep track of the amount
of time spend in a mode or simply to model continuous states that evolve according to a constant
derivative. The dynamics of clock variables are simple (δ̇ = c) and usually the dynamics of the
other continuous state variables are independent of the clock value. This corresponds to the notion
of time-invariant dynamical systems. We consider in this section c = 1 but the technique can be
applied to any other value.

Let s ∈ Ŝ be a new discrete state such that s = (qi, δ, j1, . . . , jn) where δ is a clock variable. A
new translated state st = (qi, 0, j1, . . . , jn) is created by setting the clock variables of the original
state s to zero. If st has been visited, we compute the discrete states to which st has transitions
and the transition probabilities by uniformly sampling the cell corresponding to st. The states to
which st has transitions to have the form sk = (qi, 1, k1, . . . , kn) because the clock variable is always
incremented by one. Once the transitions of st are known, we also know the transitions of s. i.e, if st
has a transition to sk,then s has a transition to skt = (qi, δ+1, k1, . . . , kn) with the same probability.
This avoids having to sample the cell corresponding to the state s. For any state s that is newly
visited, if its corresponding translated state st has already been visited, then we can just use the list
of states to which st has transitions, to get the list of states to which s has transitions. Note that
this technique can be used only if no mode transitions are enabled by the state s.

Removing elements from the queue During the execution of the reachability algorithm, the
probability associated to many cells that are in the queue of reached states could eventually become
zero. Some of these states may never be visited again. This is particularly true in systems with
clock variables for states that have non-zero values for the clock. This is because all the probability
mass in the state s = (qi, δ, j1, . . . , jn) are transferred to states of the form sk = (qi, δ+1, k1, . . . , kn)
thus leaving no probability mass in the state s. Such states can be removed from the queue thereby
reducing memory requirements. During the execution of the reachability algorithm we periodically
traverse the queue Q of reached states and we remove states that have non-zero values for the
clock and zero probability mass. Notice that there is a trade-off between the interval at which
this operation is done and the memory requirement. Traversing the queue of reached states is an
expensive operation but can reduce memory requirements. The removal is not a trivial process and
it is implemented over multiple passes over the Q starting from those cells which do not have input
edges in the reachability graph.

Linear Stochastic Hybrid Systems with additive noise Consider the case where the following
restrictions are imposed on the dynamics of the DTSHS:
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• (Flows)T is a stochastic map that describes the dynamics of the continuous variables corre-
sponding to each mode. The dynamics of the continuous variables corresponding to mode qi
is given as

x(k + 1) = T (qi, x(k), ξi(k)) = x(k) + ξ̃i(k), (2.32)

where ξ̃i(k) is an i.i.d process characterized by a joint probability distribution function Fξ̃i(ξi) =

P (ξ̃i ≤ ξi).

• (Reset Maps) R is a stochastic map that probabilistically resets the values of the continuous
state variables when a switch is made from mode qi to mode qj . The reset is given as

x(k + 1) = R(qi, qj , x(k), η̃ij(k)) = x(k) + η̃ij(k), (2.33)

where η̃ij(k) is an i.i.d process characterized by a joint probability distribution function
Fη̃ij (ηij) = P (η̃ij ≤ ηij).

Let L(i) = diag(l
(i)
1 , . . . , l

(i)
n ) be the diagonal matrix with entries equal to the interval length

for each dimension. We seek a matrix P ∈ R|Ŝ|×|Ŝ| where the entry P (s, s′) is the probability of
switching from s ∈ Ŝ to s′ ∈ Ŝ. Notice that this is an average probability since different points
in H(s) will have different probabilities to move to H(s′) in one step. Consider a state value
x(k) ∈ H(s) at time k such that mode(s) = mode(s′) = q. Then P (x(k + 1) ∈ H(s′)|x(k)) can be
expressed as follows:

P (x
(q)
l + L(q)(B(s′)T − 1)− x(k) ≤ ξ̃q ≤ x(q)

l + L(q)B(s′)T − x(k)) = (2.34)

Fξ̃q (x
(q)
l + L(q)B(s′)T − x(k))− Fξ̃q (x

(q)
l + L(q)(B(s′)T − 1)− x(k)) = (2.35)

Fξ̃q,u(B(s′)T , x(k))− Fξ̃q,l(B(s′)T , x(k)) (2.36)

Thus:

P (s, s′) =
1

|H(s)|

∫
H(s)

[
Fξ̃q,u(B(s′)T , x(k))− Fξ̃q,l(B(s′)T , x(k))

]
dx(k) (2.37)

Consider now the case where mode(s) 6= mode(s′). Let mode(s) = q and mode(s′) = q′. Follow-
ing a similar procedure, we can compute the transition probability as follows:

pqq′ =
1

|H(s)|

∫
H(s)

S(q, q′, x(k))dx(k) (2.38)

P (s, s′) =
pqq′

|H(s)|

∫
H(s)

[
Fη̃qq′ ,u(B(s′)T , x(k))− Fη̃qq′ ,l(B(s′)T , x(k))

]
dx(k) (2.39)

The reachability algorithm is the same as in the case of general dynamical systems. However,
there is no need to learn transition probabilities using sampling as closed form expressions are
available. Notice, that the integrals appearing in the expressions of the transition probabilities
might have to be computed numerically. In some special cases, closed form expressions can be
derived for such integrals.
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Chapter 3

Stochastic analysis of the thermal
management system

We present the results obtained by the reachability algorithm described in Chapter 2 on the model
presented in Chapter 1. We first introduce some application specific adjustment to the model. Then,
we present a simulation result and the computation of some probabilistic metrics using both Monte
Carlo methods and the method presented in this report. All the results have been obtained using
the USHVER tool developed at the United Technologies Research Center Inc., under this contract.

3.1 Experiment setup

The system that we consider has five continuous variables and eight modes, although the last mode
has a trivial behavior. The continuous variables are the altitude (h), the velocity (v), the fuel-tank
mass (M), the fuel-tank temperature (T ) and a clock variable (δ). We are interested in computing the
marginal probability distribution of the fuel-tank temperature at the end of the mission (i.e. when
the system enters the eighth mode). The dynamics of the height and velocity variables for the various
modes are setup as described in Chapter 1. The clock variable evolves according to δ̇ = 1. Some
of the mode transitions are triggered by the clock variables. For example, the switching probability
from the taxing mode to take-off mode depends only on the clock variable δ which is reset to zero
after mode transition. The continuous dynamics for fuel-mass(M) and fuel-tank-temperature(T ) for
all modes are given as

Ṁ = −mf

Ṫ =
1

M
(minTin −moutT +mfT )

(3.1)

where mf is the rate at which fuel is consumed. Flow rate mout is the rate at which fuel is drawn
from the fuel-tank and min is the rate at which fuel is returned to the fuel-tank after re-circulation.
The rate of fuel-consumption depends on the thrust according to the following equation:

mf =
0.7fthrust

3600.0
kg/s. (3.2)

The thrust requirement is fixed for each mode as described in Chapter 1. For the sake of this first
set of results, we set mout = 2mf and min = mout −mf . This means that we are not modeling any
additional control on the fuel rate. A controller could be added to the model, albeit an increase in
the number of states and, therefore, in the complexity of the analysis. The fuel absorbs heat from
the fuel-oil heat exchanger before being consumed by the combustor. The temperature of the fuel
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that is consumed by the combustor after passing through the fuel-oil heat exchanger(Tf ) is given by
the following equation:

Tf =
HL

moutCsp
+ T. (3.3)

Csp is the specific heat of fuel and is assumed to be 0.2 kJ/kg K. HL is the heat-load generated
by the EPS for each mode. Part of the fuel that is not consumed by the combustor is recirculated
through the fuel-air heat exchanger back to the fuel-tank. The temperature drop in the fuel after
passing through the fuel-air heat exchanger is assumed to be a fraction (f) of the difference in
the temperature of the fuel and air. This temperature drop is a function of the heat-exchanger
effectiveness and depends on how often the ram air inlet can be opened. We set f = 0.1. Thus the
temperature of the fuel that goes back into the fuel-tank is given as

Tin = Tf + f(Tair − Tf ) (3.4)

The outside air temperature are modeled using different layers with different lapse rates. For our
studies, only the first two layers are important. The temperature in the first two layers are given by
the following model:

Tair = T0 − 6.5h for 0 ≤ h ≤ 11.0

Tair = 0.751865T0 for 11.0 < h ≤ 20.0
(3.5)

where T0 = 150C = 288.15K and h is in km. We assume an that there is an initial uncertainty in
the fuel temperature. The fuel temperature is uniformly distributed between 288 and 298 degrees.
Also, we discretize the dynamics of the system using a Euler Forward Scheme. The discretization
step is 1 second.

3.2 Simulation of the model

A simulation trace of the system obtained with USHVER is shown in Figure 3.1. The figure shows
variables h, M and T as a function of time.

The take-off and ascending phase account for a small fraction of the mission. One may wonder if
such modes could be abstracted by simply lumping the total fuel consumed during these two phases,
and increasing the temperature of the remaining fuel. Although this two phases are executed at the
highest fuel consumption rate (as can be seen from from mass M diagram), their precise dynamics is
not interesting for the analysis and therefore they could indeed by abstracted into a discrete jump.
As a consequence, the complexity of the analysis problem would be reduced as part of the state
space does not need to be explored.

It is interesting to observe how the fuel temperature increases according to a non-linear law.
During the execution of the mission, the fuel mass decreases. Thus, the fuel temperature increases
more rapidly. However, for the first 3000 seconds the temperature profile appears to be fairly linear.
Thus, it would be possible to approximate the fuel temperature dynamics by a clock variable Ṫ = c,
for t ∈ [0, 3000], where c needs to be determined. This approximation would allow to treat all the
variables as clocks and therefore providing a significant analysis speed-up. Moreover, when only
clocks are present, analytical results are also available.

These types of simplifications are model and analysis dependent. They are usually suggested by
either the system modeler or experts with domain knowledge. There are also techniques to abstract
the dynamics of a hybrid systems by splitting modes into sub-modes where the dynamics can be
approximated by clocks [28].
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Figure 3.1: Results obtained using the USHVER simulator
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3.3 Monte-Carlo Simulation

USHVER provides a Monte-Carlo simulator which can be instantiated on a DTSHS model to
generates sample traces and gather statistics. The traces are generated by sampling the set of initial
states according to the initial distribution Init. Other uncertain parameters are samples during the
simulation. For example, each random trace corresponds to a unique pair of values for the taxing
time and mission time which are chosen randomly. We generate 5000 such traces and for each
random trajectory generated for the DTSHS, we store the values of all the state variables at the
end of the mission. Figure 3.2 shows the marginal probability distributions for the mass(M) and
temperature(T ) of the fuel left in the fuel-tank at the end of the mission.

3.4 Reachability Analysis

For reachability analysis, the continuous state space is partitioned into rectangular sets and each
cell in the partition is encoded as described in Chapter 2. The number of grid points for each
variable are chosen manually. The grid size should be chosen so that it captures the dynamics of
the original system realistically. But also the grid size should be small enough so that the resulting
data structures satisfy the memory constraints and so that the reachability computation can be done
in a reasonable amount of time. Provided that some restrictions on the dynamics and probability
distributions hold, the authors in [5] shows how the error in the probability computation can be
bounded for a given partition of the continuous state space. Table 3.1 reports the list of parameters
relative to the discretization grid. For each mode and for each variable, the table lists the minimum
and maximum values of the variable in that mode, the number of selected grid points and the size of
the intervals. Some of the invariants can be computed analytically whereas some others are learned
through simulation. Selecting the grid size automatically is a challenge and requires further research.

Figure 3.3 shows the marginal probability distributions for the mass(M) and temperature(T )
variables at the end of the mission. There are some differences in the marginal probability distribu-
tions obtained by Monte-Carlo simulations (Figure 3.2) and the reachability algorithm. We believe
that this is partly due to undersampling in the Monte-Carlo simulations and partly due to the error
introduced in the reachability algorithm by the discretization of the continuous state space.

Concluding Remarks. We have been able to successfully apply our probabilistic reachability
algorithm to a DTSHS model of a thermal management system with 5 continuous variables and 7
modes. The execution of the reachability analysis and measure propagation takes roughly half an
hour on a laptop with a Intel Core2 Duo CPU P9400 running at 2.40 GHz, and 2.95 GB RAM. Up
to 3 million states were generated by the reachability computation. Areas for improvement include
the automatic generation of the grid and the computation of rigorous confidence bounds for the
results generated by the reachability algorithm for which we could leverage the work in [5].
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(a) Marginal probability distribution for mass of fuel left in the fuel-tank at
the end of the mission

(b) Marginal probability distribution for the temperature of the fuel in the
fuel-tank at the end of the mission

Figure 3.2: Results obtained using Monte Carlo simulations
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Mode Var. x
(i)
d,l x

(i)
d,u g

(i)
d l

(i)
d

0 h 0 10050 1 10050
v 0 102.6 1 102.6
M 7834 9000 110 10.6
T 288 291.4 3 1.13333
δ 0 650 900 0.722222

1 0 10050 1 10050
0 75 10 7.5
7820 8454 5 126.8
291.05 291.45 2 0.2
0 659 1 659

2 0 12000 10 1200
0 102.6 10 10.26
7512 8446 140 6.67143
291.1 292.4 2 0.65
0 857 1 857

3 0 10052 1 10052
0 102.6 1 102.6
946 8280 1400 5.23857
292.1 333 25 1.636
0 4482 4500 0.996

4 0 10052 10 1005.2
62.55 102.6 1 40.05
882 2176 22 58.8182
317.65 333.4 2 7.875
0 4375 1 4375

5 0 10052 1 10052
10 102.6 10 9.26
876 2176 22 59.0909
317.65 333.9 5 3.25
0 4383 1 4383

6 -50 10052 5 2020.4
62.55 102.6 1 40.05
864 2176 5 262.4
317.65 334.85 5 3.44
0 4414 5 882.8

7 0 10052 1 10052
62.55 102.6 1 40.05
484 2176 1 1692
317.65 345 1 27.35
0 4468 1 4468

Table 3.1: tbl:griddy
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(a) Marginal probability distribution for mass of fuel left in the fuel-tank at
the end of the mission

(b) Marginal probability distribution for the temperature of the fuel in the
fuel-tank at the end of the mission

Figure 3.3: Results obtained using the Probabilistic Reachability algorithm.
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Chapter 4

Adding details to the thermal
management system

In Chapter 1 we developed a model of the system under study as a single DTSHS. We introduce
DTSHSs with inputs and outputs and we define their composition. We then develop a new model
of the original system as composition of two controllers and a dynamical model of the TMS. We
use this new model to also determine the minim amount of heat that needs to be rejected using
ram air. Finally, we determine the minimum requirements that the embedded platform need to
satisfy in order to support the control functions. These requirements can then be used to design
and embedded architecture able to support the control function. The embedded architecture will be
verified using a different set of tools that are better suited for these type of systems.

4.1 Input-Output DTSHS

Systems featuring inputs and output present some compositionality challenges when the output
value at instant k depends directly on the input value at instant k. To avoid this situation, our
definition of IODTSHS is such that the output value at instant k only depends on the value of the
state at instance k. This is not a limitation and the two definitions can be proved to be equivalent.

In the sequel, we will use the following notation. For a real variable x, a discrete evaluation
function is a mapping Vx : N → R, such that given a discrete time instant k, the value of x at k
is Vx(k). We use the shorthand notation xk to denote Vx(k). Similarly, for a set of variables X, a
valuation function is a mapping VX : N → [X → R] from the set of natural numbers to the set of
functions that map variables in X to their values. We also use the shorthand notation Xk to denote
VX(k).

Definition 7. An Input-Output Discrete Time Stochastic Hybrid System (IODTSHS) is a tuple
H = (U,O,Q, d, T, L,R, out, init) where :

• U = {u1, . . . , um} is a set of input variables (or inputs for short)

• O = {o1, . . . , on} is a set of output variables (or outputs for short)

• Q = {q1, . . . , ql} is a set of discrete modes

• d : Q→ N associates to each discrete mode the size of the continuous state space. This function
implicitly defines the set of state variables Xq for each mode q ∈ Q. The hybrid state space S
of the IODTSHS is defined as S = ∪q∈Q{q} × Rd(q).
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• T = {Tq} is a family of stochastic maps such that in mode q, Xq,k+1 = Tq(Xq,k, Uk, ξq,k),

where ξ̃q is a vector of i.i.d. processes.

• L = {Lq : Rd(q) × Rm → Dist(Q)} is a family of switching functions that associate to each
state Xq,k in mode q a discrete probability distribution over the set of modes. Lq(Xq,k, Uk)(q′)
is the probability of jumping from mode q to mode q′ when the value of the continuous state is
Xq,k and the value of the input is Uk.

• R = {Rq′q } is a family of stochastic maps such that X ′q′,k = Rq
′

q (Xq,k, Uk, ηq,k), where η̃q is a
vector of i.i.d. processes.

• out = {outq} is a family of stochastic maps such that Uk = outq(Xq,k, νq,k), where ν̃q is a
vector of i.i.d. processes.

• init : B(S)→ [0, 1] defines an initial probability distribution over the state space.

The semantics of such model is similar to the one defined in Section 2.1.1 and we are not going
to expand on it. The only difference that can be noted is the addition of the inputs. We also notice
that the output functions do not take inputs as arguments.

We can now define a composition operation for IODTSHS. We introduce some notation that will
turn out to be useful in the definition of the composition operator. Let X be a set of variables and
X ′ ⊆ X. We define valuation projection as follows: Xk|X′ = VX′(k) such that for each x ∈ X ′,
VX′(k)(x) = VX(k)(x).

Definition 8. Let H(1) = (U (1), O(1), Q(1), d(1), T (1), L(1), R(1), out(1), init(1)) and H(1) = (U (2), O(2), Q(2), d(2), T (2), L(2), R(2), out(2), init(2))
be two IODTSHS. The composition H = H(1)||H(2) is a IODTSHS defined only when O(1)∩O(2) = ∅
and for all q ∈ Q(1) ×Q(2), X

(1)
q ∩X(2)

q = ∅:

• O = (O(1) ∪O(2)) \ (U (1) ∪ U (2)), O+ = O(1) ∪O(2)

• U = (U (1) ∪ U (2)) \O+, U+ = U (1) ∪ U (2)

• Q = Q(1) ×Q(2) is a set of discrete modes

• d : Q → N such that d(q1, q2) = d(1)(q1) + d(2)(q2). The state variables are considered to be

Xq = X
(1)
q ∪X(2)

q

• Tq(Xq,k, Uk,Ξq,k)|
X

(i)
q

= T
(i)
q (Xq,k|X(i)

q
, U+

k |U(i) ,Ξq,k|ξ(i)q
), ∀q ∈ Q, ∀Xq,k ∈ Rd(q), ∀Uk ∈ Rm,

i = 1, 2, where Ξq = ξ
(1)
q ∪ ξ(2)

q

• Lq(Xq,k, Uk) = L
(1)
q (Xq,k|X(1)

q
, U+

k |U(1))L
(2)
q (Xq,k|X(2)

q
, U+

k |U(2)), ∀q ∈ Q, ∀Xq,k ∈ Rd(q)

• Rq′q (Xq,k, Uk,Θq,k)|
X

(i)
q

= R
q′,(i)
q (Xq,k|X(i)

q
, U+

k |U(i) ,Θq,k|η(i)q
), ∀q, q′ ∈ Q, ∀Xq,k ∈ Rd(q),

∀Uk ∈ Rm, i = 1, 2, where Θq = η
(1)
q ∪ η(2)

q

• outq(Xq,k,Γq,k)|U(i) = out
(i)
q (Xq,k|X(i)

q
,Γq,k|νq ), ∀q ∈ Q, ∀Xq,k ∈ Rd(q), i = 1, 2, where Γq =

ν
(1)
q ∪ ν(2)

q

• init = init(1) × init(2) is the product distribution of the initial distributions of the two IODT-
SHSs being composed.
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The composition operator renders our model compositional with respect to the behavior of the
system meaning that the behavior of the composed system can be derived from the behavior of the
components. When the composition results in a closed system (i.e. a system without inputs) then
the composed system is equivalent to the model presented in Section 2.1.1. We have implemented the
composition operator in USHVER and we also provide the ability to define systems hierarchically.
Hierarchy is a structural concept. In our framework, the hierarchy is defined by the parse tree of the
composition expression. For example, consider the IODTSHS defined as H = (H1||H2)||(H3||H4).
Then, the system hierarchy is as follows: System H contains two sub-systems H ′ and H ′′, where H ′

contains sub-systems H1 and H2, and H ′′ contains sub-systems H3 and H4.
Using this new model, we will now refine the system presented in Chapter 1 into the composition

of three sub-systems: a model of the dynamics of the the system, a controller of the fuel rate and a
controller of the ram air inlet (open or close).

4.2 A new model for the TMS case study

The new model we use for our case study is shown in Figure 4.1. This new system comprises three
sub-systems:

• TMS is the thermal management system. It has two outputs O = {Tf , Tout} where Tf is the
fuel temperature right before entering the combustor, and Tout is the fuel temperature in the
tank. In our model, these two variables are also state variables. Therefore, the output function
of this system is simply an identity function.

• MDOT Controller is a controller that regulates the rate of the fuel that exists the fuel tank.
The fuel rate is regulated to maintain temperature Tf within some given bounds.

• RA Controller is a controller that decides whether the ram air inlet is open or close. This
controller tries to maintain the fuel temperature within acceptable limits.

The two controllers are implemented here independently. However, we notice that this is not
the best solution for this system. In fact, in order to lower the fuel temperature in the tank, the
fuel rate must be higher than ṁf so that some fuel is allowed to circulate through the fuel/air heat
exchanger. The joint optimization of the two controllers is the subject of Chapter 7, while in this
chapter we limit ourselves to two simple control strategies to illustrate some of the capabilities of
our design system.

The ram air controller has only two modes Q(RA){qo, qc}. In mode qo, the output has value 1,
meaning that the ram air inlet is open. In mode qc, the output has value 0, meaning that the ram
air inlet is closed. There is no dynamics associated with the two states. The switching functions are
defined as follows:

• L(RA)
qo (Tout,k)(qc) = 0 if Tout,k ≥ Tout,min, and L

(RA)
qo (Tout,k)(qc) = 1 if Tout,k < Tout,min

• L(RA)
qc (Tout,k)(qo) = 0 if Tout,k ≤ Tout,max, and L

(RA)
qc (Tout,k)(qo) = 1 if Tout,k > Tout,max

This is an implementation of a bang-bang controller with hysteresis.
The flow rate controller is a simple proportional controller with bounds. The controller has only

one mode and the dynamics is defined as follows:

ṁout,k+1 = min{ṁmax,max{0, ṁout,k + α · (Tf,k − Td)}}

where α determines the bandwidth of the controller and Td is the desired temperature. We note
that this is the flow rate in excess of ṁf . This model is highly non-linear and the two bounds
constraint the ability of the system to regulate the temperature at the combustor. Thus, a critical
design decision is the amount of heat to be rejected by the fuel/air heat exchanger.
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Figure 4.1: Refinement of the first level model and decomposition into three sub-systems including
two controllers for the flow rate and ram air inlet.

4.3 Impact of the heat exchanger efficiency

The purpose of this section is to determine the amount of heat that needs to be rejected by the
thermal management system through ram air. We could in principle perform a probabilistic analysis
and determine the minimum probability that that the output of the ram air controller be equal to
1. This would then correspond to changing the switching functions L(RA) in order to guarantee
such probability. However, this type of analysis makes little sense in this context. A better way
of defining the amount of heat to be rejected by ram air is to compute the effectiveness of the
fuel/air heat exchanged. For this analysis, we simply use simulation. This is going to be a worst
case analysis for maximum taxi time (600 s) and maximum flying time (4800 s). For this simulation,
we fix Tout,min = 280◦K, Tout,max = 290◦K, Td = 340◦K, α = 1. There is no guarantee that
the temperature in the fuel tank will be in the range [Tout,min, Tout,max] since this depends on the
balance between the generated heat and the ability to reject it. For the same reason, there is no
guarantee that the fuel temperature at the combustor will be close to Td.

Figure 4.2 shows the impact of the effectiveness of the heat exchanger on the temperatures in the
fuel tank Tout and at the combustor Tf . The value of the effectiveness is swept from 0.2 to 0.45 and
we report the maximum and minimum values for the temperatures. The point in time at which the
maximum and minimum values are attained change depending on the effectiveness. The two plots
at the bottom show how temperature changes over time. Notice that the temperature values until
take off is not affected by the effectiveness because ram air cannot be used (we assume that there
are no fans to force an airstream in the inlet). When the effectiveness is 0.2, the maximum value
is attained at the end of the mission, whereas when the effectiveness is 0.45, the maximum value is
attained right before taking off. Based on this analysis, we select an effectiveness value of 0.35.

Remark 1. The way in which this effectiveness is achieved is not specified here. In general, there
could be different ways of achieving it. In some applications, the use of bleed air is not advisable for
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Figure 4.2: Impact of the effectiveness of the fuel/air heat exchanger on the maximum and minimum
temperatures of the fuel in the tank and at the combustor.

efficiency reasons. Drawing bleed air from the engines represent a loss that inevitably compromises
the efficiency metric. In some other cases, bleed air can be used as a way of colling down some of
the heat loads. In this case, there could be a decision to be made whether one or the other should
be used. Although this control design effort was originally included in the statement of work, we feel
that a much more interesting (and complex) control de sign problem is to decide on the optimal fuel
flow rate over the entire mission so that the temperature at the combustor is close to a given ideal
value (Chapter 7).

4.4 Taking into account architectural metrics

The analysis of the architecture supporting the control functions is a rather different problem that
the one presented so far. Analysis of the performance of an architecture that comprises computation
and communication components can be either deterministic or stochastic. In Chapter 8, we review
the work we have done in the probabilistic setting while we refer the reader to some other general
techniques that are available for other types of analysis. The probabilistic setting also allows to
model faults that may affect the performance of the system.

There are two different problems that can be addresses. The analysis problem has the following
typical setup. A performance target is given for an architecture, such as the minimum throughput
of a connection or the maximum delay between two events. The architecture is then analyzed and
the result of the analysis is checked against the given target. The synthesis problem, instead, starts
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from the performance target and uses a procedure (or algorithm) to come up with an architecture
that matched the given performance requirements. In both cases, the performance goal has to be
defined. It can be defined based on an intuition of what the application that will be running on the
platform needs, or it can be derived in a more formal way.

Ideally, the control application should be analyzed with some of the platform induced delay
injected in the model. Those delays are the assumption on the platform and, thus, its specification.
This way, the control algorithms will be designed to be robust to those delays. The designers will
have to balance the delay values (that that would like to be zero) with the complexity of designing
the underlying embedded platform.

There are several ways of injecting platform induced delays in the functional model. One approach
as been also recently proposed by []. In our framework, we can model deterministic as well as
probabilistic delays which allows to analyze also the impact of jitter on control algorithms. At
the functional level, delays can be typically captured using clocks. For probabilistic delays and for
exponential (or geometric in the case of discrete time systems) distributions, clocks are actually not
needed and the transition rates (or probabilities in the case of discrete time systems) are sufficient
to capture delays.
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Figure 4.3: Example of refinement of the functional model to account for platform induced delays.

The model of a controller can then be enriched or refined as shown in Figure 4.3. The original
model needs to be refined by taking into account three sources of delays: the delays associated
with receiving data from sensors, sending data to actuators, and computing the control function.
Communication delays (shown in Figure 4.3.b)represent refinements of the ideal communication
channels (drawn as simple lines in our diagrams) with a more complex channel that induces a delay
on data. The computation of the control function should also be annotated with delays because
it will ultimately take time to check for guard conditions and to compute next states and outputs.
In this simple example, the control function reduces only to checking that guards conditions are
satisfied. The refinement we show in figure refers to geometrically distributed transition times.

The analysis of these new type of models may become prohibitively complex in the general case.
Communication delays are typically modeled using queues. Because each element of the queue is a
continuous state, the number of states become larges as the delay increases. Computation delays
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can be modeled using clock variables whose values are used to guide transitions. Although clock
variables are easier to handle than general state variables, they also add to the complexity of the
analysis problem. We foresee simulation based methods to be more effective in analyzing these
models.
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Chapter 5

Coping with complexity through
an organized design flow

The complexity of the analysis task for DTSHS requires to develop strategies that are able to
decompose the analysis into sub-tasks of manageable complexity. This can be achieved with the
support of a design flow that proceeds by refinement. In this chapter we explore the use of contract
based design [31, 14] for probabilistic systems and we apply the methodology to the refinement of
the heat load sub-system and the heat sink in the next chapter. We start with an introduction
to contract-based design and we explain what are the challenges in applying this type of reasoning
to probabilistic systems. We then show some application scenarios and we go into an in depth
definition of the probabilistic contracts that we will adopt. For these contracts, we define the two
basic operation of composition and refinement that allow compositional reasoning.

5.1 Introduction to Contract-Based Design

We will use the notion of traces to define models and contracts [22, 24]. Let V be a set of variables.
A valuation is a function V → D where D is the domain of the variables. Then a behavior is a
sequence of valuations, i.e. {σi}, σi ∈ [V → D]. The set of all possible finite and infinite behaviors
over the set of variables V is simply denoted Σ(V ) = [V → D]∞. This is a denotation definition of
behaviors. A set of behaviors can be specified in practice using operational models, or expressions.
In this cases, the set of behaviors is defined by the set of legal execution of the model (e.g. the
language of a state machine), of by the set of traces that satisfy the expression, respectively.

A component M = (V,B) is characterized by a set of variables1 V and a set of behaviors
B ⊆ Σ(V ). We simplify the notation by using M to denote the set of behaviors of the model, and
VM for its variables.

A contract is a triple C(V,A,G) where V is a set of variables, A ⊆ Σ(V ) is called assumption,
and G ⊆ Σ(V ) is called guarantee. The assumption is a set of behaviors that define the contexts in
which a component is operates. The guarantee is the set of behaviors that the component promises
if the assumptions are satisfied. The assumption and the guarantee are defined on the same set of
variables.

Given a model M and a contract C(VM , A,G), then the model satisfies the contract if and only
if:

M ∩A ⊆ G (5.1)

Given a contract C(V,A,G), there exist a unique maximal implementation MC = G ∪ ¬A (where

1We will distinguish input and output ports later in this section
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¬A is the complement of A, i.e. Σ(V ) \ A). A model M satisfies a contract C, denoted M |= C, if
and only if M ⊆MC .

Before defining composition and containment of contracts, we first define input and output ports
of a model (and of a contract). We will equivalently refer to controlled and uncontrolled variables[15],
respectively. Let the variables of models be partitioned in the set U of uncontrolled variables (i.e.
those variables that are under the control of the environment) and X of controlled variables (i.e.
those variables that are under the control of the model). The controlled variables can be further
partitioned into the set of internal variables (not visible from the outside), and output variables.
This distinction is, however, not essential for our discussion.

Example 1: Models and contracts
In this example, we refer to a clocked system where variables are real-values, and an execution is
driven by a clock. Thus, Σ(V ) = [V → R|V |]∞. Sets of behaviors are simply defined by inequalities
and equalities variables that are to be considered valid at each clock tick. Consider an adder
components M with UM = {i1, i2} and XM = {o}. The set of behaviors of the added is defined by
M = {o = i1 + i2}. Consider now a contract for this component specified as follows:

A = {0 ≤ i1 ≤ 0.5, 0 ≤ i2 ≤ 0.5}, G = {o ≤ 10}

First we need to compute the intersection of M with the assumption A. This intersection is the
following system of relations:

o = i1 + i2

0 ≤ i1 ≤ 0.5

0 ≤ i2 ≤ 0.5

which means M ∩ A = {0 ≤ o ≤ 1 }. All the traces that satisfy this expression, certainly satisfy G
which implies M ∩A ⊆ G.

One may wonder if this type of formalism is limited to discrete systems. The work in [13] shows
that the same formalism applies to continuous time and hybrid systems by carefully defining the
domain of the variables.

Consider two contracts C1(V1, A1, G1) and C2(V2, A2, G2). The composition of these two con-
tracts is defined only when X1 ∩X2 = ∅, meaning that any two systems implementing the contracts
do not control the same variables.

Definition 9 (Contract composition). Given two contracts C1(V1, A1, G1) and C2(V2, A2, G2) such
that X1 ∩X2 = ∅, the parallel composition of the contracts is C = C1||C2 such that :

• X = X1 ∪X2 : the set uncontrolled variables is the union of the controlled variables of the two
contracts.

• U = (U1 ∪ U2) \ X : the set of uncontrolled variables is the union of the set of uncontrolled
variables of the two contracts, except those variables that are connected in “feedback”.

• V = X ∪ V

• G = G1 ↑V ∩G2 ↑V : the composition must satisfy both guarantees.

• A = A1 ↑V ∩A2 ↑V ∪¬G : the composition must satisfy both assumptions. However, the
assumption are also partially satisfied by the interaction among the two components. Thus,
the assumption of the composite can be relaxed by adding ¬G.
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In this definition we used the notion of inverse projection of variables. For a set of behaviors
B on variables V , the inverse projection over V ′ ⊇ V , denoted by B ↑ V ′ is the set of behavior
{b ∈ [V ′ ⇀ D′]∞|b ↓ V ∈ B}. The inverse projection is defined in terms of the projection operator
↓. The projection operator for contracts is contravariant for assumptions and guarantees [13]. Given
a contract C(V,A,G) and a variable v ∈ V , projection is defined as follows:

C ↓v= (∀v.A,∃v.G)

Another type of composition is the conjunction of contracts. Conjunction is an operation that
joins together two aspects of a model that are orthogonal. For example, one contract might be used
to define the assumption and guarantees on the sequences of values, while another contract might
be used to define the timing properties (in terms of real-time) of the sequences of values.

Definition 10 (Conjunction of contracts). Given two contracts C1(V1, A1, G1) and C2(V2, A2, G2)
such that V1 = V2, their conjunction is a contract C = C1 ∧ C2 such that :

• V = V1 = V2

• A = A1 ∪A2

• G = G1 ∩G2

This definition can be actually generalized to the case where the sets of ports are different [13].
The general definition used a pre-order on contracts. The pre-order capture the notion of refinement
or substitutability. In words, a contract C1 refines a contract C2 is it makes more assumptions and
provides less guarantees.

Definition 11. Given two contracts C1(V1, A1, G1) and C2(V2, A2, G2) such that V1 = V2, contract
C1 refines contract C2, denoted C1 � C2 if and only if A1 ⊇ A2 and G1 ⊆ G2.

5.2 Coping with complexity: compositional reasoning and
design flows

The general definition of contracts leads to compositional rules for independent implementability.
In particular, one key rule is the following:

Proposition 1. Let M1 and M2 be two models (implementations) and, C1 and C2 be two contracts
such that M1 |= C1 and M2 |= C2, then M1||M2 |= C1||C2.

This rule finds numerous applications. During the design of a system, a system engineer could
work with abstract models that satisfy some contracts. The system design activity goal is to satisfy
a system goal expressed by a contract C(A,G). Once the system has been analyzed such that C
is satisfied, then the contracts for each sub-system can be delivered to the sub-system designers.
If the refinement of each sub-system satisfies the prescribed contract, then the composition of the
sub-systems should satisfy top level contract C.

Other rules are important to establish design flows based on contracts:

Proposition 2. Let M be a model, and C1 and C2 two contracts such that C1 � C2. Then
M |= C1 ⇒M |= C2.

This proposition states that if a model satisfies a contract, then it satisfies any other less restric-
tive contract.
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Remarks on contract-based design The definition of models and contracts has been given
using a general denotational framework based on the notion of traces. In practice, an operational
model for contracts needs to be used for automatic verification. Some models have been proposed
that rely either on temporal logic, or directly on executable models. For example, the work in [15]
uses hybrid systems to define contracts. In this chapter we have seen other formalisms to define
contracts for probabilistic systems.

The way in which contracts are specified impacts the complexity of the parallel composition
operator as well as the complexity of checking if a contract is a refinement of a more abstract
contract. Unfortunately, the complexity refinement checking for the probabilistic contracts that we
have reviewed in this section is high. The benefit of decomposing the analysis task may vanish unless
a more practical approach can be found.

5.3 Contract-Based Design for probabilistic systems

The idea of contracts can be extended to probabilistic systems. Extending contracts to probabilistic
systems is a non-trivial task. As discussed in Section 5.2, a contract specifies a set of behaviors
as assumptions, and a set of behaviours as guarantees. In the context of probabilistic systems, a
behaviour (or better a set of behaviors) has an associated probability measure (see for example [11]
for the definition of the probability measure defined by a Markov chain). When implementing a
sub-system that is required to satisfy a contract, one can choose to implement a tighter contract,
i.e. one that makes more assumptions and less guarantees (although it might not be the most cost
effective choice).

One might be tempted to define the assumptions and the guarantees as stochastic processes with
a precise statistics. For example, consider contracts captured by Markov Decision Processes with
precise probability distribution functions. The implementation of such contract must make sure to
match such probability distribution precisely, which would be, indeed, a difficult task. In fact, the
probability measure associated with the states of the system (and evolving in time) can be though
of as an additional state variable of the system which needs to be “implemented” by the designer.
For this reason, the approach that has been historically followed is to describe the specification of
a probabilistic system (i.e. its contract) using probability intervals [3]. This approach as been used
also in more recent works [53].

5.3.1 Probabilistic systems and probabilistic specifications

Jonssnon and Larsen [3] in 1991 already posed the problem of specification and refinement for
probabilistic systems. In this work, a probabilistic specification involves the definition of intervals of
probabilities. In summary, the transition between two states of a system has an associated interval of
probabilities rather then a single probability value. This type of specification allows some flexibility
when the system is refined into an implementation.

In this section we present a simplified description of the procedure as an introduction of other
related works. Consider a probabilistic model defined by a tuple M(S, P, V ) where S is a set of states,
P : S×S → [0, 1] is a transition probability function, such that for all s ∈ S,

∑
s′∈S P (s, s′) = 1, and

V : S → 2A is an output function with A a set of atomic propositions. With abuse of notation, we will
use P also to denote the transition matrix of the probabilistic model such that Pi,j = P (i, j). Also, for
a set Q ⊂ S we adopt the notation P (s,Q) =

∑
s′∈Q P (s, s′), P (Q, s) =

∑
s′∈Q P (s′, s),P (Q,Q′) =∑

s∈Q
∑
s′∈Q′ P (s, s′).

Definition 12 (Bisimulation relation). Let M(S, P, V ) be a probabilistic model. An equivalence
relation R on S is a probabilistic bisimulation on S if given two states i, j ∈ S such that (i, j) ∈ R,
the followings hold:

• V (i) = V (j),
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Bisimulation relation example
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(b) The abstraction of the model

• ∀ Q ∈ S/R, P (i, Q) = P (j,Q)

Two states i, j ∈ S are probabilistic bisimulation equivalent, written i ' j if there exists some
probabilistic bisimulation R such that (i, j) ∈ R.

The notion of bisimulation allows to group states that are indistinguishable to an observer. We
illustrate this concept through an example.

Example 2: Bisimulation
Consider the probabilistic model in Figure 5.1(a). Each state is labelled with the state name and
the set of atomic propositions that are true in that state. Let the bisimulation relation be R =
{(s1, s3), (s2, s4)}. It is easy to verify that the conditions in Definition 12 are all satisfied:

• V (s1) = V (s3) and V (s2) = V (S4)

• P (s1, {s2, s4}) = 0.7 = P (s3, {s2, s4}), and P (s2, {s0}) = 0.8 = P (s4, {s0})

When a bisimulaiton relation has been found, then one can analyze an abstraction of the system
where only equivalence classes are considered (because states withing a class cannot be distinguished
by an observed only looking at the sequence of atomic propositions). Figure 5.1(b) shows the
abstracted system. There are only three states corresponding to the three equivalence classes induced
by the bisimulaiton relation. There are several technical definitions of the equivalence of two models
induced by a bisimulation relation. Our purpose is only to provide an intuition through an example.
As a further exercise, we can for example compute the probability that starting from s0, end will
eventually become true (i.e. Prob(trueUend)). For the model in Figure 5.1(a), there are three paths
that satisfy this condition: s0 → s1 → s2 with probability 0.21, s0 → s3 → s2 with probability 0.04,
and s0 → s3 → s4 with probability 0.0.03. Thus, the total probability is 0.28. For the model in
Figure 5.1(b) there is only one path with probability 0.28 as well.

A probabilistic specification is a tuple S(S,P, V ) where S is a set of states, P : S × S → 2[0,1] is
a probabilistic transition function that associates an interval of probabilities to each transition, and
V : S ← 2A is an output function with A a set of atomic propositions.

It is a natural question to ask whether a probabilistic system satisfies a probabilistic specification.
The satisfaction relation can be defined as follows

Definition 13 (Satisfaction relation). Let S(S,P, V ) be a probabilistic specification and M(SM , PM , VM )
be a probabilistic model. A relation R ⊆ SM × S is a satisfaction relation if (sm, s) ∈ R implies the
followings:

• VM (sm) = V (s)
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Satisfaction
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(d) A model that satisfies the specification

• There exists a probability distribution δ : P × S → [0, 1] such that:

– for all s′m ∈ SM , δ(s′m, S) = PM (sm, s
′
m)

– for all s′ ∈ S, δ(SM , s
′) ∈ P(s, s′)

– δ(s′m, s
′) > 0⇒ (s′m, s

′) ∈ R

We will write sm sat s if and only if (sm, s) ∈ R for some satisfaction relation R.

The probability distribution δ defines a relation between the sets of next states in the probabilistic
specification and in the probabilistic model. This relations defines which part of a transition in the
specification is assigned to what part of which transition in the probabilistic model. We clarify this
concept through an example.

Example 3: Satisfaction
Figure 5.1(c) shows a probabilistic specification and Figure 5.1(d) a probabilistic model. We will
show in this example the the probabilistic model satisfies the probabilistic specification. First, we
provide a brief explanation of what the models represent. Consider a system characterized by three
levels (or a representative variable): l is a em low level, m is a medium level, and h is a high level.
The system is captured by three states s′l, s

′
m and s′h, respectively. The transitions among these

states are all intervals [0.2, 0.8]. One could interpret these probabilities as the speed at which the
system transitions from one state to another. Also notice that we don’t explicitly represent self
transitions, but they are actually present in the model.

The model in Figure 5.1(d) captures the same type of system where fast and slow transitions
between states are separated: svl, svm and svh represent states such that transitions are fast, while
sl, sm and sh represent states where transitions are slow. There is also a small probability that a
system moving fast from a high level to a low level starts transitioning slow and viceversa.

We now check that the relation:

R = {(svl, s′l), (sl, s′l), (svm, s′m), (sm, s
′
m), (svh, s

′
h), (sh, s

′
h)}

is a satisfaction relation. Consider the element (svl, s
′
l) ∈ R. Figure 5.1 shows the way in which

the probability distribution δ is represented: a dashed line between two states s and t indicates
that δ(s, t) > 0. The first condition is satisfied because V (svl) = {l} = V (s′l). To check the second
condition, we only need to check the following:

PM (svl, svl) + PM (svl, sl) = 0.2 ∈ P(s′l, s
′
l) = [0.2, 0.8]
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Figure 5.1: Example of weighting function.

Also, we have that (sl, s
′
l) ∈ R, (svm, s

′
m) ∈ R which satisfies the last condition of the satisfaction

relation definition. One can check all the other pairs in R in a similar way:

PM (svm, svm) = 0.1 ∈ P(s′m, s
′
m) = [0, 0.6]

PM (svm, svl) + PM (svm, sl) = 0.5 ∈ P(s′m, s
′
l) = [0.2, 0.8]

PM (svh, sh) + PM (svh, svh) = 0.2 ∈ P(s′h, s
′
h) = [0.2, 0.8]

PM (svh, svm) + PM (svh, sm) = 0.8 ∈ P(s′h, s
′
m) = [0.2, 0.8]

PM (sl, sl) + PM (sl, svl) = 0.8 ∈ P(s′l, s
′
l) = [0.2, 0.8]

PM (sl, sm) = 0.2 ∈ P(s′l, s
′
m) = [0.2, 0.8]

PM (sm, sm) = 0.4 ∈ P(s′m, s
′
m) = [0, 0.6]

PM (sm, sl) + PM (sm, svl) = 0.2 ∈ P(s′m, s
′
l) = [0.2, 0.8]

PM (sh, sh) + PM (sh, svh) = 0.8 ∈ P(s′h, s
′
h) = [0.2, 0.8]

PM (sh, svm) + PM (sh, sm) = 0.2 ∈ P(s′h, s
′
m) = [0.2, 0.8]

Thus R is a satisfaction relation .

The satisfaction relation can be used to define refinement among two specifications2.

Definition 14 (Refinement). Let S(S,P, V ) be a probabilistic specification. Then s ∈ S refines
t ∈ S, written s ⊆ t if and only if for any probabilistic model M(SM , PM , VM ) and for any state
p ∈ SM , p sat s⇒ p sat t.

This definition refers to refinement between two states in a specification as a relation where a
state s is more refined than t if its specification is more “stringent” than t. This is because if a
state p in a model is able to satisfy the specification state s, then it will be able to satisfy t as well.
However, there might be models for which t can be satisfied by a state p which is not able to satisfy
s.

This definition is somehow not operational, meaning that it will not allow to define a procedure
to check refinement. The following definition (together with the subsequent proposition) give a way
of checking refinement.

2Notice that a specification where the interval probabilities reduce to a single number can be casted to a probabilistic
model. Thus, refinement is a notion that also extends to the case where a model refines a specification.
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Definition 15 (Simulation relation). Let S(S,P, V ) be a probabilistic specification. A simulation
R on S is a relation R ⊆ S × S such that (s, t) ∈ R implies the followings:

• V (s) = V (t)

• There is a function ρ : S × S → [0, 1] such that:

– for any function f : S → [0, 1] such that f(s′) ∈ P(s, s′), and for any t′ ∈ S:∑
s′∈S

f(s′) · ρ(s′, t′) ∈ P(t, t′)

– ρ(s′, t′) > 0⇒ (s′, t′) ∈ R

t simulates s if there exists a simulation relation R that that (s, t) ∈ R.

Proposition 3. Let S(S,P, V ) be a probabilistic specification and s, t ∈ S two states, then t
simulates s ⇒ s ⊆ t.

This proposition gives us a way of checking refinement between probabilistic specifications (and
therefore enables us to check whether a probabilistic model refines a probabilistic specification).
One can imagine how this concepts could be used in a design flow. At the higher abstraction levels,
a system can be analyzed using abstract specifications of components. Once the system has been
proved correct, each component can be implemented separately as long as it satisfies the specification.
This methodology can be effectively used only if checking properties on probabilistic specifications
is not a complex task, and if also checking refinement is not prohibitively complex.

The two problems to be addressed then are the following:

• Given a probabilistic specification S(S,P, V ) and a property P expressed in some probabilistic
logic, check whether S satisfied P.

• Given two specifications S1 (abstract) and S2 (refined), find a simulation relation between the
states of S2 and the states of S1 (i.e. check whether S1 simulates S2) which implies that S2

refines S1.

The first problem turns out to be complex. Consider a probabilistic specification S(S,P, V ) and
a state s. The probability distribution associated with the transitions emanating from s is one of
the distributions from the following set:

Ds = {µ ∈ Dist(S)|µ(s′) ∈ P(s, s′)}

When checking if a specification satisfies a properties, all possible choices should be checked (because
they are all possible refinements of the specification). For the type of specifications we are considering
here, namely specifications where transition probabilities are intervals, there are algorithms that can
solve this problem [3, 37]. However, the general problem is complex. Consider the reachability
problem (which is a basic algorithm for checking properties).3.

The second problem presents some difficulties but it can be solved using linear programming or
network flow formulations [9, 10].

Remark 2 (Abstraction of a system into a specification). We have defined refinement for proba-
bilistic specifications. The notion of refinement can also be used to define abstractions. In [37], it is
shown how to generate an abstraction of a CTMC into an interval specification.

3Alessandro Note: Need to describe an example that shows the complexity
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5.3.2 Review of previous work on probabilistic contract-based design

Although the concepts of refinement and simulation for finite probabilistic systems has been around
form many years, there are few approaches to define probabilistic contracts and to build a framework
for probabilistic contract-based design (PCBD). In this section we review the most recent work and
we also review related approaches.

PCBD using Interactive Markov Chains Xu et al [53] propose a framework for probabilistic
contract based design which is based the Interactive Markov Chains (IMC) model. This type of
models include both deterministic transitions driven by events, and probabilistic transitions.

Definition 16. An IMC is a tuple (S,A,→, π, s0) where:

• S is a non-empty set of states partitioned into Sp, the set of probabilistic states, and Sa the
set of action states;

• A is a finite set of actions;

• →⊆ Sa ×A× S is an action transition relation ;

• π : Sp → (S → [0, 1]) is a transition probability function such that for each s ∈ Sp, π(s) is a
probability distribution over S;

• s0 ∈ S is the initial state.

This model is an extension of the probabilistic model defined in Section 5.3.1. The extension is
in the addition of the action set and the action transition function. Notice that the set of states
is partitioned such that actions are only “visible” in action states. However, chains of probabilistic
states or actions states are possible in the model.

Definition 17. An contract is a tuple (S,A,→, σ, s0) where:

• S = Sp ∪ Sa ∪ {⊥} is a non-empty set of states partitioned into Sp, the set of probabilistic
states, and Sa the set of action states, and an accepting state ⊥ without outgoing transitions;

• A is a finite set of actions;

• →⊆ Sa ×A× S is an action transition relation ;

• σ : Sp → (S → 2[0, 1]) is a transition probability predicate such that for each pair (s, s′) ∈
Sp × S, σ(s)(s′) is an interval of probabilities.

• s0 ∈ S is the initial state.

This contract definition is an extension of the probabilistic specification defined in Section 5.3.1.
A transition (s, a,⊥) in a contract is an assumption that action a does not occur in s, whereas a
transition (s, a, s′) with s′ 6= ⊥ is a guarantee that action a will be accepted in s. If as sate s has not
outgoing transitions labelled with action a, than the component guarantees that such actions will
not be emitted at s. A transition (s, s′) such that σ(s)(s′) defines the allowed transition probabilities
from s to s′.

In this work, the authors define composition and conjunction of contracts that do not seem
to present any difficulty. The authors also define contract refinement that for the probabilistic
transitions follows the notion of simulation defined in Section 5.3.1. In summary, given two contracts
C1(S1, A1,→1, σ1, s0,1), and C2(S2, A2,→2, σ2, s0,2), C1 refines C2 if and only if s0,1 ≤ s0,2 where
≤⊆ S1 × S2 is the greatest relation such that s ≤ t implies the following:

• C1 does not make stronger assumptions than C2, i.e. s = ⊥ ⇒ t = ⊥
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• C1 must provide at least the same guarantees, meaning that if there is a transition (t, a, t′)
(t′ 6= ⊥) in C2, then there must be a corresponding transition (s, a, s′) in C1 and s′ ≤ t′.

• If s and t are probabilistic states, then t must simulate s (according to the definition in
Section 5.3.1).

• If s is an action (probabilistic) state and t is a probabilistic (action) state, then s (all ac-
tions states reachable from s with paths of non-zero probability) must refine all action states
reachable from t over paths of non-zero probability (t).

The verification of contract refinement entails finding the greatest relation ≤ which is possible, but
it might face complexity issues for very large models (e.g. the ones obtained through discretization
of stochastic hybrid systems).

PCBD using Markov Decision Processes Delahaye [23] proposes to use a model that can
be casted to a Markov Decision Process. This model is the used to compute the probability that
an implementation steps outside of a contract specification using the notion of stationary optimal
strategies with mean-payoff functions [32].

The main idea can be described as follows. Consider a Controllable Markov Chain (CMC), that
is a tuple (S,A, α, P ) where S is a set of states, A is a set of actions, α : S → 2A is a function
that associates to each state a set of available actions, and P : S × A → (S → [0, 1]) a transition
probability function that associates to a state s and an action a a probability distribution over S.
A pure stationary strategy for a CMC is a function σ : S → A that selects an action in each state
of the CMC.

A Markov Decision Process (MDP) is a CMC with an associated payoff function φ. Given an
MDP, one can define a probability measure on the execution paths induced by a pure strategy σ
(and it can be proved that such probability measure is unique [32]). Let Pσs denote such probability
measure of the path starting at s. A payoff function is a function φ : Sω → R that maps infinite
sequences of states to a payoff. Then, the expected payoff is Eσs (φ(S0S1 . . .)).

In this work, the payoff function is define as follows. A reward r(s, a, t) is associated with each
transition from s to t under action a. The mean payoff is then defined as:

lim sup
n∈N

1

n+ 1

n∑
i=0

r(si, ai, si+1)

In [32] it is proved that mean-payoff MDPs have a pure stationary optimal strategy.
In this work, models are deterministic but they may have probabilistic inputs. A contract is then

defined as follows:

Definition 18. A probabilistic contract is a tuple C(u, c,p,D, E) where

• u ∪ c is the signature of the contract, where u is the set of uncontrolled variables and c is the
set of controlled variables

• p ⊆ u is the set of probabilistic inputs

• D : p→ Dist(V ) is a function that associates to each probabilistic port a probability distribution
on the domain of values V of the ports.

• E(S,A, δ) is a deterministic transition system.

A contract is the used to derive a CMC Ep which is obtained as a result of having probabilistic in-
puts to a deterministic transition system. Given an implementation M(SM , A, δM ), the synchronous
product of Ep and M is used to define a MDP where the reward structure is defined as follows. Let
(s1, s2) be a state of the product of Ep and M , respectively, then:
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• If an action a is available in s1 and in M , then

r((s1, s2), a, (s′1, s
′
2)) = 0

• If an action a is not available in s1 and it is available in s2, then

r((s1, s2), a, (s1, s
′
2)) = 1

• if an action a is available in s1 and δM (s2, a) is not defined, then

r((s1, s2), a, (s′1, s2)) = 0

For this MDP, one can find a pure strategy that provide the maximal expected mean-payoff β. This
value can be seen as the maximal expected probability that an implementation violates the contract.
Thus the model M satisfies contract C with probability at least 1− β.

Assume/Guarantee reasoning The third approach we present has been recently implemented in
the PRISM [40] probabilistic model checker. In this approach, assumes and guarantees about a model
are captured by safety property. Given a safety property A, a deterministic finite automata that
define all the prefixes of the model’s behaviors that violate the property is defined. A deterministic
finite automaton is a tuple Aerr(S, s0, αA, δA, F ) where S is the set of states, s0 ∈ S is the initial
state, αA is an alphabet (of actions), δA : S ×αA → S is a transition function and F ⊆ S is a set of
accepting (error) states (labelled with errA).

Checking if a probabilistic automaton M satisfies a safety property with a certain minimum
probability, written M |= 〈A〉≥p requires the following two steps:

• Derive a probabilistic automaton M ′ = M ⊗ Aerr (this operation is defined by the authors
in [40]).

• Compute PrminM (A) = 1−PrmaxM⊗Aerr (�errA), i.e. the minimum probability that M satisfies A

• Compare this probability with p.

In assume guarantee reasoning, one wants to check the following basic property:

〈A〉≥pA M 〈G〉≥pG
meaning that if the assumption A is verified with probability at least pA, then M satisfies the
guarantee G with probability at least pG. This basic statement is used in inference rules like the
following:

〈true〉M 〈A〉≥pA ∧ 〈A〉≥pA M 〈A〉≥pG
〈true〉M 〈G〉≥pG

In [40] it is shown that checking:
〈A〉≥pA M 〈G〉≥pG

reduces to checking the following:

¬∃σ′ ∈ AdvM ′ s.t.
(
Prσ

′

M ′(�¬errA) ≥ pA ∧ Prσ
′

M ′(�errG) > 1− pG
)

This statement can be informally understood as follows. Consider the (possibly non-deterministic)
model M ′ = M [αA] ⊗ Aerr ⊗ Gerr (i.e. the model composed with the probabilistic automata for
the assumptions and guarantees, respectively. Then one needs to check that there is no strategy σ′

that can generate a trace of the model M ′ with a probability of not getting into an assumption error
state greater than pA (i.e. that satisfies the assumption), and with a probability of getting into a
guarantee error state greater than 1− pG (i.e. that violates the guarantee).

This checking can be done in polynomial time using multi-objective model checking [27].
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5.4 Approximate Refinement Checking

In the final remarks of Section 5.2, we emphasize the complexity barrier that is faced when checking
for contract refinement. In this section we first introduce a probabilistic model with inputs and
outputs that will be used to define refinement of models. We then use the definitions given in
Section 5.3 to find the conditions under which two models can be claimed to be in refinement
relation. Finally, we propose the use of an approximate refinement checking which provides a
distance between two models. A small distance is an indication that the two model are close to be
one the refinement of the other.

5.4.1 Stochastic Input-Output Automata

The Stochastic Input-Output Automata (SIOA) model (presented later in this section) is a simple
model that we use to describe the specification of a system and its refinement.

Definition 19. A stochastic input-output automaton is a collection IOA = {I, S,O, T, U}, where

• I is a finite discrete space of inputs.

• S is a finite discrete space of internal states for the IOA.

• O is a finite discrete space of outputs.

• T gives the transition probabilities for the internal state of the IOA given the current value of
the input. If s ∈ S and i ∈ I, then T (., (s, i)) is a probability distribution on the internal state
space S. i.e., T (s′, (s, i)) is the probability for the internal state of the IOA to transition from
s to s′ given that the current value of the input is i.

• U gives the conditional probability for the outputs given the current values for the internal state
and input. U(., (s, i)) is a probability distribution on the output space O. i.e., U(o, (s, i)) gives
the probability for the output to be o given that the current values for the internal state and
input are s and i respectively.

The execution of an SIOA is defined as follows. For a given input sequence {i1, i2, ..., ik, ...}, the
input-output automaton executes as follows. At a given time k, if the internal state is sk, the output
ok is generated randomly by extracting a value from the distribution U(., (sk, ik)). The internal
state at the next time-step sk+1 is chosen by extracting a value from the distribution T (., (sk, ik)).
This procedure is repeated at every time-step.

5.4.2 Equivalence of SIOAs

In this section we define when two SIOAs are equivalent. We then introduce a metric that mea-
sures the degree to which two SIOAs are equivalent and that can be used to judge whether an
implementation can be accepted as refinement of a specification.

Let P : Sr → Sc be a mapping. In our discussions, Sr is going to refer to a larger (or refined)
state-space and Sc to a smaller (or coarse) state-space. The mapping P can be thought of as
a projection. Given a mapping P , we also define a corresponding mapping P e : Sr × I → Sc × I
defined as P e(sr, i) = (P (sr), i). Let Mr be the space of probability distributions on the space Sr and
Mc be the space of probability distributions on the space Sc. We define a mapping Pr : Mr → Mc

as follows:

Pr(µr)(sc) =
∑

sr∈SR:P (sr)=sc

µ(sr). (5.2)
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where µr ∈Mr and Pr(µr) ∈Mc. We refer to Pr as the probability projection mapping corresponding
to the projection P .

In the following discussions, it would be useful to define the following mappings Vi : M → Mo

where i is a member of the input space I and Mo is the space of probability distributions on the
output space O. Vi is defined in terms of the conditional probability U as:

Vi(µ)(o) =
∑
s∈S

µ(s)U(o, (s, i)). (5.3)

where µ ∈M and Vi(µ) ∈Mo. We refer to Vi as the state-output projections corresponding to U .
We now define refined implementations of stochastic input-output automata.

Definition 20. A stochastic input-output automaton IOAr = {I, Sr, O, Tr, Ur} is said to be a
refined implementation of the stochastic input-output automaton IOAc = {I, Sc, O, Tc, Uc} if there
exists a projection mapping P : Sr → Sc that satisfies the following conditions.

1 For all pairs of values (sr, i) ∈ Sr × I, we must have Pr(Tr(., (sr, i))) = Tc(., (P (sr), i)).

2 For all pairs of values (sr, i) ∈ Sr × I, we must also have Ur(., (sr, i)) = Uc(., (P (sr), i)).

The first condition in Definition 20 requires that the one-step transition of the refined internal
state followed by the projection should give the same result as projecting the refined state followed
by the one-step transition of the coarse internal state. The commutative diagram in Figure 5.2
illustrates this. The second condition in Definition 20 requires that the outputs of the refined
system corresponding to the internal state sr must be the same as the outputs of the coarse system
corresponding to the projected state P (sr).

Figure 5.2: Commutative diagram illustrating the first condition in Definition 20

Theorem 5.4.1. If IOAr = {I, Sr, O, Tr, Ur} is a refined implementation of IOAc = {I, Sc, O, Tc, Uc},
then they have the same input-output behavior. Assuming that the initial probability distributions
for the states of the two systems are consistent (µc0 = Pr(µr0)), then for a given input sequence
{i1, ..., iN} ∈ IN , any output sequence {o1, ..., oN} ∈ ON has the same probability of occurring under
executions of IOAr and IOAc.

Proof. Let W r
i and W c

i respectively be the transition matrices for the states of the refined system and
the coarse system corresponding to an arbitrary input i. Let µr and µc be probability distributions
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for the states of the refined and coarse system such that µc = Pr(µr). Let V ri and V ci be the
state-output projection mappings corresponding to Ur and Uc respectivly. All we need to prove the
above Theorem is to show that

V ri′ (µ
rW r

i ) = V ci′ (µ
cW c

i ) for all i, i′ ∈ I. (5.4)

The statement above essentially states that the sequence of inputs i and i′ lead to the same prob-
ability distribution of the outputs for the both the coarse and refined system. To prove the above
statement, first observe that

Pr(µrW r
i ) = Pr(µr)W c

i = µcW c
i . (5.5)

This is because we have

L.H.S = Pr(µrW r
i ) = Pr

((∑
sr

µr(sr)δsr

)
W r
i

)

= Pr

(∑
sr

µr(sr)δsrW
r
i

)

= Pr

(∑
sr

µr(sr)W
r
i (sr, .)

)
=
∑
sr

µr(sr)Pr (W r
i (sr, .))

=
∑
sr

µr(sr)W
c
i (P (sr), .).

(5.6)

The last equality follows from the commutative requirement in Condition 1 of Definition 20. We
also have

R.H.S = µcW c
i = Pr(µr)W c

i

= Pr

(∑
sr

µr(sr)δsr

)
W c
i

=

(∑
sr

µr(sr)Pr(δsr )

)
W c
i

=

(∑
sr

µr(sr)δP (sr)

)
W c
i

=
∑
sr

µr(sr)W
c
i (P (sr), .).

(5.7)

Thus the L.H.S and R.H.S are equal. In the above expressions, δsr is a probability distribution such
that

δsr (s) =

{
1 if s = sr

0 if s 6= sr.
(5.8)

Now, from Condition 2 of Definition 20, we have

V ri′ (µ
rW r

i ) = V ci′ (Pr(µ
rW r

i )) = V ci′ (µ
cW c

i ). (5.9)

This completes the proof as we can now easily extend the argument for an arbitrary length of input
sequences as we always have µck = Pr(µrk) where µrk and µck are the probability distributions for the
refined and coarse states at time-step k.
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5.4.3 Metrics for comparing SIOAs

Given stochastic input-output automata IOAr = {I, Sr, O, Tr, Ur} and IOAc = {I, Sc, O, Tc, Uc},
ideally one would like to check for refinement by checking for Conditions 1 and 2 in Definition 20
for all (sr, i) ∈ Sr × I. This naturally leads to the following metric:

Dist(IOAr, IOAc) =
∑
i∈I

∑
sr∈Sr

|Pr(Tr(., (sr, i)))− Tc(., (P (sr), i))|

+
∑
i∈I

∑
sr∈Sr

|Ur(., (sr, i))− Uc(., (P (sr), i))| .
(5.10)

Computing the above metric may be infeasible and unnecessary because when these automata are
connected to other automata, many internal states may never be reached and the set of inputs
with which the automata may be excited may be constrained due to the dynamics of the composed
system. Given a probability distribution µ̄I on the space of inputs and a probability distribution µ̄r

on the refined internal states, we could define the following metric:

Distµi,µr (IOAr, IOAc) =
∑
i∈I

∑
sr∈Sr

µ̄I(i)µ̄r(sr) |Pr(Tr(., (sr, i)))− Tc(., (P (sr), i))|

+
∑
i∈I

∑
sr∈Sr

µ̄I(i)µ̄r(sr) |Ur(., (sr, i))− Uc(., (P (sr), i))| .
(5.11)

µ̄I(i) could reflect the probability that the input i will be received and µ̄r(sr) could reflect the
probability that the state sr will be touched. Thus inputs that are never received and internal states
that are never reached do not influence the metric. Therefore the refinement of an automaton can
be checked in the context determined by the assumptions on its environment. A natural choice for
µ̄I(i) and µ̄r(sr) will be

µ̄I(i) =
1

T

∫ T

0

µ(i, t)dt

µ̄r(sr) =
1

T

∫ T

0

µ(sr, t)dt.

(5.12)

where µ(i, t) is the probability of the input being i at time t and µ(sr, t) is the probability of the
internal state being sr at time t.
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Chapter 6

Refinement checking applied to the
heat load component

The system presented is Chapter 1 is refined into more detailed models for the heat load and the
heat sink. We refine the heat load sub-system by including the details of the oil circuit used to cool
down the generators and the engine. We then show how refinement checking can be carried out
between the original lumped model and the more refined model.

6.1 Refined model description

We refine the heat load component of the thermal management system. In particular we are in-
terested in the oil circuit that is used to cool down the engine or the electric power generators.
Figure 6.1 shows a block diagram of the oil circuit used to reject the heat from these type of sources.
Consider for example the heat from a power generator (we consider the generator only in this section
as the same method is used to transfer heat from the engine to the fuel). The generator needs to
meet a power requirement w. It generates a certain amount of heat HG that needs to be rejected.
The heat is transferred to the oil that is typically used as lubricant. The oil circuit is very similar
to the fuel circuit presented in Chapter 1.

The oil is collected in a tank that is modeled as a lumped element containing a certain oil mass
Mo at temperature To. Contrary to the fuel circuit, the total oil mass Mo is constant over time
(unless there are leaks in the circuit). The oil is moved by a pump that is controlled by a controller
which reads the oil temperature and acts on the oil mass rate ṁo. The heat transferred to the oil is
then transferred to the fuel through an oil/fuel heat exchanger. The heat exchanger has two sides:
the oil side with an oil inlet and an oil outlet, and a fuel side with a fuel inlet and a fuel outlet. The
dashed line box represents the model in Chapter 1, Figure 1.4. This refined model is supposed to
be substituted to the heat load component of Figure 1.4.

A näıve approach to the verification of the refined model is to simply substitute the heat load
component with its refinement. This substitution increases the number of state variables which
makes the complexity of the verification task unmanageable. The use of contract-based design
avoids this complexity by proceeding as follows. Assume the heat load component to be modeled
as a contract with assumptions on the inputs (i.e. heat load HL, the fuel flow rate ṁout, and the
temperature Tout of the fuel at the inlet of the heat load component). Under these assumptions,
the heat load component provides as a guarantee a step change in the temperature of the fuel while
leaving the flow rate unchanged1.

1This guarantee is hard to meet for any realistic implementation and will have to be relaxed in the refinement
process when enough details are available. Alternatively, the guarantee could be already changed at this level by
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Refinement of the Model
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Figure 6.1: Refinement of the oil circuit on the electric power system side.

There are challenges associated with the ability to extract assumptions when they are not given.
To be more precise, our model did not include an explicit assumption on the fuel flow rate and on fuel
temperature. The only assumption is on the heat load which we assumed to be uniformly distributed
around a mean value given for each mission point. The assumptions on the input temperature and
on the fuel flow rate should in principle be derived by the analysis of the abstract model. It is
beneficial to be able to derive tight assumptions to avoid flowing down requirements that would be,
otherwise, too stringent.

Section 5.3 provides a review of methods that have been used to define probabilistic contracts.
One approach to derive assumptions for our heat load component is to select a modeling paradigm
(e.g. Interactive Markov Chains), construct a parametric model, and estimate the parameters of the
model through simulation, or again analysis. Another approach is simply to perform analysis of the
abstract model and record the evolution of the probability distribution functions at the input of the
heat load component. These probability distributions can then be used to compare the abstract and
the refined model as done later in this section.

6.1.1 Refined model for fuel-oil heat exchanger

The effectiveness of a heat exchanger is defined as the ratio between the actual heat transferred
and the maximum heat transfer possible with an ideal heat exchanger. Consider the fuel-oil heat
exchanger shown below.

The effectiveness is defined as

introducing a slow dynamics in the temperature change and a probability distribution around it which captures the
uncertainty due to abstraction.
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Figure 6.2: Fuel-oil heat exchanger

εf/o =
mfcf (Tfout − Tfin)

moilcoil (Toilin − Tfin)

=
moilcoil (Toilin − Toilout)
moilcoil (Toilin − Tfin)

.

(6.1)

The above equations are written assuming that (moilcoil) represents the minimum thermal-
capacity rate. The abstract model of the heat load used in Chapter 1 guarantees that the heat HL

is entirely transferred to the fuel. This guarantee must also be provided by the refined model. The
guarantee can be satisfied by controlling the oil flow rate as follows:

moil =
HL

εf/ocoil (Toilin − Tfin)
. (6.2)

A controller that achieves the above oil flow rate satisfies the contract that a heat load HL is
dumped into the fuel. There are two reasons why the controller may fail to satisfy the guarantee.
The first reason is that the dynamics of the controller might be slow to adapt to abrupt changes in
the heat HL. The second reason is that temperature measurements might be affected by noise (or
imprecision). We consider the second effect and we show how the approximate refinement relation
changes depending on the level of the noise assumed on the measurement.

6.2 Refinement checking results

In this section we start by comparing two simple models: The high level model of the system where
which uses an ideal heat load component, and a more refined model where the heat is exchanged
between through a fuel-oil heat exchanger (as described in Section 6.1.1). In this experimental setup
we proceed as shown in Figure 6.3. We build two heat exchanger models:

• An abstract model, called coarse which follows the implementation presented in Section 1.1. In
this model, the heat that is transferred to the fuel induces just a change in the fuel temperature
which is proportional to the heat load divided by the fuel rate.

• A refined model which follows the implementation presented in Section 6.1.1. In this model,
the effect of the oil circuit is taken into account. In particular, the total oil mass is assumed
to be 850 kg.
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Figure 6.3: First experimental result for the refinement verification of the heat exchanger.

The inputs to the models are the total heat load HL, the fuel rate ṁf and the fuel temperature
Tf . The output of the model is the oil temperature. We generate a probability distribution over
the input space. In this case study, the probability distribution is supposed to be uniform between
the following bounds: HL ∈ [20, 25] kW , ṁf ∈ [1, 2]kg/s, and Tf ∈ [280, 300] K. This distribution
is sampled at each time step of the reachability analysis algorithm to generate the distributions
over the next states and over the outputs. The distance metric on the outputs has been defined in
Section 5.4.3. We plot the result in Figure 6.4. The metric is plotted as a function of time. For a
fixed time, higher values of the metric correspond to higher variance of the sensor noise (as expected)

Figure 6.5 shows the time average of the distance metric as a function of the sensor noise variance.
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Figure 6.4: Value of the output distance between the coarse and refined model of the heat exchanger
for different values of the variance of the sensor noise.

Figure 6.5: Time average of the distance between the two models as a function of the variance of
the sensor noise.
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Chapter 7

Optimal control of the fuel
temperature

In this chapter and the ones that follow, we show how one could move away from the complexity of
the analysis problem by synthesizing systems in such a way that the desired properties are verified
by construction. In other words, instead of verifying that a property P is satisfied for a given system,
we aim at developing tools such that the system is the result of an automated design process which
takes P as constraint (and therefore generates only systems that satisfy such property).

In this chapter, we show an optimal control synthesis technique for the thermal management
system. In this approach, the natural dynamics of the system is considered given while the control
laws are considered parameters to be optimized. Bounds on the fuel temperature are taken into
account as constraints of an optimization problem. Thus, the required guarantees that the system
must provide are enforced by construction, i.e. through a synthesis procedure, such that verification
is not needed. We take into account the stochastic nature of the dynamics of the plant. In Chapter 9
we generalize the synthesis approach to include the effect of the implementation platform such as
the reliability of hardware components.

For plants that can be modeled as hybrid systems, we may also need a controller that is hybrid in
nature. Design of such hybrid controllers or computation of optimal controls for hybrid systems in
general is a difficult task. For some results, see [34] and [21]. In [34], the authors present a method
to compute approximations to optimal feedback control laws using discretizations of Bellman type
inequalities for lower bounds on the optimal value function. In [21], the authors discuss necessary
conditions for optimality for a class of hybrid systems and show how this leads to non-smooth
optimization problems. However, efficient algorithms for solving these non-smooth optimization
problems are still not available. In [18], the author discusses algorithms which efficiently solve
control synthesis problems for constrained linear systems and constrained linear hybrid systems.
There are few or no tools currently available for optimal control of nonlinear hybrid systems or
stochastic hybrid systems.

In this chapter, we focus on numerical methods for a class of nonlinear hybrid systems where
the mode transitions are enabled by a clock value. i.e., mode transitions are dependent only on the
amount of time spent in a mode and not on the actual state of the system. The amount of time spent
in a mode of operation (the transition time) is also assumed to be a random variable with a known
distribution. Thus the transition times can be thought of as uncertain parameters of the hybrid
system. Note that these transitions times are not part of the design and are a characteristic of the
system to be controlled. The hybrid system also has some free adjustable parameters corresponding
to each mode of operation that can be chosen by the designer. The objective is to pick values for these
adjustable parameters of the system that minimizes the expected value of some meaningful cost-
function that captures the behavior of the system over a finite time-horizon. Thus the cost-function
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may include finite-time-integrals of some function of the states of the system and the controls.
We show an optimal control synthesis technique to minimize the expected value of a cost-function.

This can be framed as a stochastic optimization problem. We use the sample average approximation
method described in [39] to solve the stochastic optimization problem. The basic idea behind the
sample average approximation method is simple. It is a Monte Carlo sampling-based approach to
stochastic optimization problems. A random sample of the uncertain parameters is generated and
the expected value function is approximated by the corresponding sample average function. The
resulting sample average optimization problem is solved using standard optimization techniques.
We use the optimization software IPOPT ([52]) to numerically solve the resulting sample average
optimization problem.

As a case study, we illustrate the method for the design of a thermal management system of
a prototypical aircraft. The parameters to be optimized for are the fuel flow rates of the system
during various phases of the mission and the uncertain parameters are the time durations of various
phases of the mission. In principle it would also be possible to take into account the effects due to
the implementation platform such as delays in computation and communication, and reliability of
communication.

7.1 Optimal design of hybrid systems with time-triggered
mode transitions

In this section, we discuss an approach to compute optimal controls for discrete-time hybrid systems
with uncertain parameters. In particular, we look at discrete-time hybrid systems with time-triggered
mode transitions. i.e., the switching of the system from one mode to another depends only on the
amount of time spent in that mode (or equivalently a clock value). The amount of time spent in
each mode is a random variable with some known distribution. Note that for such systems, the
sequence of modes that the system operates in is known beforehand. Thus the system we consider
has dynamics of the form

x(k + 1) = T (1, x(k), p0) for j0 ≤ k < j1

x(k + 1) = T (2, x(k), p1) for j1 ≤ k < j2

x(k + 1) = T (3, x(k), p2) for j2 ≤ k < j3

.....

x(k + 1) = T (m,x(k), pm) for jm−1 ≤ k < jm.

(7.1)

Here k represents the time-index. The amount of time spent in each mode ∆q = jq − jq−1, is a
random variable with some known distribution Wq. The system has m modes and the m − th is
considered to be the ’final’ mode. The time duration of a sample trajectory is given as

L =
m∑
q=1

∆q. (7.2)

Systems described above are particularly useful to model processes where the sequence of modes of
operation are fixed and known in advance, but the transition times are uncertain. A good example
for such a system is the typical mission of an aircraft which has various modes of operation like
Taxing, Take-off, Flying and Landing. A typical aircraft mission follows a fixed sequence of modes,
but the time spent in modes like Taxing and Flying may be uncertain.

The variables pq are parameters that need to be optimized for in the operation of each mode.
In what follows, we describe how one can do such an optimization. The cost-function we use is
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the expected value of some functional of the sample trajectories. The optimization problem can be
written as

min
pq∈Uq

C := E∆

 m∑
q=1

jq∑
k=jq−1

Fq (x(k), pq)

 . (7.3)

where x(k) is subject to the dynamics described in (7.1). Fq is assumed to be a differentiable
function of x(k) and pq. ∆ is the vector of transition times. i.e. ∆q is the q − th component of the
vector ∆. The expectation is taken over the uncertain transition times ∆q. To solve the stochastic
optimization problem described above, the sample average approximation (SAA) method (see [39])
is a natural choice. We briefly review the SAA method in the following subsection.

7.1.1 Review of the sample average approximation method

In the most general form, stochastic optimization problems take the form

min
u∈U
{g(u) := EPG(u,W )} . (7.4)

Here W is a random vector having probability distribution P . U is the set from which the variables
u can be chosen from. For the optimal design problem we described before, the random vector W
would correspond to the vector ∆ whose elements are the random transition times for each mode.
The variables u include both the parameters pq that need to be optimized for and the states x(k) that
are subject to the constraints imposed by the system dynamics. EPG(u,W ) =

∫
G(u,W )P (dw) is

the expected value of the objective function G(u,W ). The SAA method is suitable for optimization
problems that have the following characteristics.

• The expected value function g(u) := EPG(u,W ) cannot be written in a closed form and its
value cannot be easily calculated.

• The function G(u,W ) is easily computable for given u and W .

• The set of feasible solutions U is very large so that enumeration is not feasible.

The optimal design problem we described before has all these characteristics and therefore makes
the sample average approximation method a natural approach to this problem. The basic idea of
sample average approximation is simple indeed. It is a Monte Carlo sampling-based approach to
stochastic optimization problems. A random sample of W is generated and the expected value
function is approximated by the corresponding sample average function. The obtained sample
average optimization problem is solved, and the procedure is repeated several times until a stopping
criterion is satisfied.

Let W 1, ...,WN be an independently and identically distributed (i.i.d) random sample of N
realizations of the random vector W . Consider the sample average function

ḡN (u) :=
1

N

N∑
i=1

G(u,W i). (7.5)

The sample average approximation (SAA) problem is

min
u∈U

ḡN (u). (7.6)

It has been shown that the solution of the sample average approximation problem (7.6) converges to
the solution of the original problem (7.4) with probability one. Also roughly speaking, the optimal
value for the objective function obtained from the approximate problem converges exponentially fast
to the true optimal value for the objective function as N →∞. For more theoretical details on the
convergence of the SAA method, see [39].
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7.1.2 Application of SAA to optimization of time-triggered hybrid sys-
tems

For hybrid systems of the type described in (7.1) at the beginning of this chapter, optimal design
can be done using the SAA method described before. One can generate a finite number of samples
for the random vector of transition times ∆ and then find the optimal parameters pq that minimize
the corresponding sample average function. The variables u that need to be optimized for include
both the state variables xik corresponding to each sample ∆i and the parameters pq. In our notation,
∆i for i = 1, 2, ..., N are N i.i.d. samples for the vector of transitions times and xik is the state of
the system at time k for a trajectory corresponding to the sample ∆i. The state variables xik are
subject to the constraints imposed by the system dynamics given as

gik = xik+1 − T (1, xik, p0) = 0 for j0 ≤ k < ji1

gik = xik+1 − T (2, xik, p1) = 0 for ji1 ≤ k < ji2

gik = xik+1 − T (3, xik, p2) = 0 for ji2 ≤ k < ji3

.....

gik = xik+1 − T (m,xik, pm) = 0 for jim−1 ≤ k < jim.

(7.7)

where jiq − jiq−1 = ∆i
q. The cost-function is approximated by the sample average given as

C̄ =
1

N

N∑
i=1

 m∑
q=1

jiq∑
k=jiq−1

Fq
(
xik, pq

) . (7.8)

To find the state variables xik and the parameters pq that minimizes the cost-function C̄ subject to
the constraints in (7.7), we use the optimization software IPOPT (see [52]). IPOPT is a software
package for large-scale nonlinear optimization. It uses an interior point line search filter method
to find local solutions to nonlinear optimization problems. For the IPOPT software, it is necessary
to compute the gradient of the cost-function C̄ with respect to the variables xik and pq. These
derivatives are given as

∂C̄

∂xik
=

1

N

∂Fq
∂xik

(7.9)

∂C̄

∂pq
=

1

N

N∑
i=1

 jiq∑
k=jiq−1

∂Fq
∂pq

 . (7.10)

It is also necessary to compute the Jacobian of the constraint equations. The elements of the
Jacobian of the constraint equations are computed as

∂gik
∂xik+1

= 1.0

∂gik
∂xik

=
−∂T (q, ., .)

∂xik
∂gik
∂pq

=
−∂T (q, ., .)

∂pq
.

(7.11)

The IPOPT software takes in as input the user-provided routines that compute the cost-function,
the gradient of the cost-function and the Jacobian of the constraint equations and returns optimal
values for the parameters pq.
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7.2 Application to optimal design of aircraft thermal man-
agement system

As a case study, we apply the SAA method described before to the optimal design of the thermal
management system of a prototypical aircraft. In a typical aircraft, the fuel flow rates for each mode
of operation is maintained at a steady state. A pump is used to push fuel from the fuel tank into the
fuel circuit. The fuel is then used to reject the heat produced by the environmental control system
(ECS) and the electric power system (EPS). Only part of the fuel flowing in the circuit is sent to
the nozzles for consumption. Part of the fuel goes back to the fuel tank. For a schematic of the
thermal management system, see Figure 9.4.

Model

7

Fuel tank

Fuel 

consumption

Flow

• Mass rate

• Temperature

Heat loadPump

Heat sink

Splitter

ECS/EPS/Engine

Initial Mass

Initial Temp.

_mout

_min

_mf

HL

HS

Tout

Tin

Tf

Figure 7.1: Model of thermal management system.

The heat loads and fuel consumption rates during various modes of the aircraft mission are
different. This leads to some interesting design problems. One interesting design problem is to
find the optimal fuel flow rates for each mode so that the temperature of the fuel that goes into
the nozzles stays close to an optimal temperature. For the purposes of this paper, we consider the
design of the TMS as if there were only two modes - Taxing and Flying. Indeed, these modes are
the two most crucial modes of a typical mission as the amount of time spent in other modes like
take-off and landing is extremely short compared to the overall mission time and the contribution
of design parameters in these modes to relevant cost-functions is negligible. Therefore we focus on
the problem of choosing the optimal fuel flow rates during the taxing and flying modes and treat the
problem as if there were only two modes.

We consider two dynamic variables - the mass (M) and temperature (T ) of the fuel remaining in
the tank. The temperature of the fuel after it absorbs heat from the EPS and ECS is denoted by Tf .
The increase in temperature (Tf −T ) is related to the fuel flow rate mout through the heat-balance
equation

moutCsp (Tf − T ) = HL, (7.12)

where HL is the heat load coming from the ECS/EPS. Csp is the specific heat of the fuel. The fuel
that is returned to the fuel-tank is cooled by the air-fuel heat exchanger. The temperature of the
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fuel after it is cooled is denoted by Tin. The drop in temperature (Tf − Tin) is assumed to be a
fraction of the difference between Tf and the outside air temperature Tair. i.e.,

Tf − Tin = f(Tf − Tair), (7.13)

where f is referred to as the heat sink efficiency. If mf is the rate at which fuel is consumed, then the
rate at which fuel is returned to the fuel-tank after re-circulation is given as min = mout−mf . The
rate of change of the temperature of the fuel remaining in the tank is derived from the heat-balance
equation

minCspTin −moutCspT =
d

dt
(MCspT )

= −mfCspT +MCspṪ .

(7.14)

Discretizing the above equations, the discrete-time dynamics for the temperature (T ) and mass (M)
variables can be written as

M(k + 1) = M(k)− δ.mf (k)

T (k + 1) = T (k) +
δ

M(k)
(min(k)Tin(k)−mout(k)T (k) +mf (k)T (k)) .

(7.15)

Here δ is the size of the discrete time-step and from the above equations we have

Tin(k) = Tf(k) + f(Tair − Tf(k))

and where Tf(k) = T (k) +
HL

moutCsp
.

(7.16)

Note that mf and mout are considered to be constant within each mode. More precisely

mout(k) =

{
mtaxi if 0 ≤ k < ∆taxi

mfly if ∆taxi ≤ k < ∆taxi + ∆fly.
(7.17)

mtaxi and mfly are the parameters that need to be chosen so that we get some desirable thermal
behavior. ∆taxi and ∆fly are random variables uniformly distributed within the intervals [300s, 900s]
and [3600s, 4500s] respectively. HL is also considered to be constant within each mode. The cost-
function that we are going to use for this problem is a combination of the quality of the fuel
temperature going into the combustor (Tf) and the control effort in terms of the fuel flow rates.
The cost-function is

C = E

[
1

2

∑
k

(Tf(k)− Tset)2
+
W

2

∑
k

m2
out(k)

]
(7.18)

Tset is a set-point temperature at which we desire the fuel-combustor temperature (Tf) to be close
to. W is a parameter that decides how much the control effort in terms of the fuel flow rates should
be penalized.

As described for the SAA method, we generate a finite number of samples for the taxing and
flying times. The samples are ∆i

taxi and ∆i
fly for i = 1, 2, ...., N . The sample average cost-function

is given as

C̄ =
1

N

N∑
i=1

1

2

∑
k

(
Tf ik − Tset

)2
+
W

2

1

N

N∑
i=1

∆i
taxim

2
taxi + ∆i

flym
2
fly. (7.19)
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Variable Value
HL (Taxing) 18.44(kW )
HL (Flying) 20(kW )
mf (Taxing) 0.84 (kg/s)
mf (Flying) 1.44 (kg/s)
Csp 0.2 (kJ/kg K)
f 0.1
Tset 320K
M(0) 9000 kg
T (0) 280K

Table 7.1: Fixed parameter values for TMS model.

The gradient of the sample average cost-function with respect to the optimization variables are given
as

∂C̄

∂M i
k

= 0.0,

∂C̄

∂T ik
=

1

N

(
Tf ik − Tset

)
,

∂C̄

mtaxi
=

1

N

N∑
i=1

∆i
taxi∑
k=0

(Tf ik − Tset).
−HL

m2
taxiCsp

+
W

N

N∑
i=1

∆i
taximtaxi,

∂C̄

mfly
=

1

N

N∑
i=1

∆i
taxi+∆i

fly∑
k=∆i

taxi

(Tf ik − Tset).
−HL

m2
flyCsp

+
W

N

N∑
i=1

∆i
flymfly.

(7.20)

The constraints on the variables M i
k and T ik are derived from the dynamics as described in equation

(7.7) of Section 7.1.2. Also the elements of the Jacobian of the constraint equations are computed
as described in equation (7.11) of Section 7.1.2.

7.2.1 Results

We solved the SAA problem for different number of samples. For 50 samples, the number of con-
straint equations derived from the system dynamics is around 450,000. For a problem of this size,
IPOPT takes about 4 minutes to solve the optimization problem on a laptop with a Intel Core2 Duo
CPU P9400 running at 2.40 GHz and 2.95 GB RAM. The values for various fixed parameters in
the TMS model are shown in Table 7.1. Figure 9.5 shows some optimization results obtained using
IPOPT for different values of W . The plots shows how the optimal fuel flow rates obtained change
as the number of samples are increased. As you can see, the optimal values converge very quickly
with respect to the number of samples.

For W = 1.0, the optimal taxing fuel flow-rate (mtaxi) is roughly 3 times bigger than the fuel
consumption rate (mf ). The value of the cost-function is lowest for this higher flow-rate because
the penalty on the control effort is small and for this higher fuel-rate, the resulting fuel temperature
(Tf) after it absorbs heat from the ECS/EPS is made lower (and closer to Tset). However, if the
fuel flow-rate is increased beyond this optimal value, the cost-function would increase because the
resulting temperature Tf may go way below the set-point temperature Tset. For W = 250.0, the
optimal value for mtaxi is roughly 2 times bigger than mf . This is because the penalty on the control
effort is higher and the fuel-flow rates have to be reduced resulting in higher values for Tf .

Figure 7.3 shows the variation of the objective function and optimal fuel flow-rates with respect
to the weighting parameter W . As described before, the objective function has two components.
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(a) W = 1.0

(b) W = 125.0

(c) W = 250.0

Figure 7.2: Results obtained using the SAA method for the optimal design of TMS. These plots
show results obtained for different values of W . The plots show how the optimal fuel-flow rates
change as the number of samples are increased.
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The first component reflects the quality of the fuel temperature going into the combustor and is
given as

C1 = E

[
1

2

∑
k

(Tf(k)− Tset)2

]
. (7.21)

The second component reflects the control effort in terms of the fuel-flow rates and is given as

C2 = E

[
1

2

∑
k

m2
out(k)

]
. (7.22)

Now for different values of W , we get different Pareto optimal solutions in the following sense. For a
given value of W , let p∗q be the optimal parameters that lead to optimal objective function values of
C∗1 and C∗2 . Then for the system to perform such that the objective function C1 = C∗1 , the minimum
required value of C2 is C∗2 and vice versa. Figure 7.3 shows a plot of (C∗1 , C

∗
2 ) for different values

of W . Figure 7.3 also shows how the optimal fuel flow rates change with respect to W . It can be
clearly seen that the optimal flow rates decrease as W is increased.

7.3 Summary and Future steps

We have described a simple but effective procedure to optimally design hybrid systems whose mode
transitions are time-triggered. In particular, we assumed that the transitions times are random
variables with known distributions and used stochastic optimization methods to design the hybrid
system so that on average, its performance is optimal. We illustrated the method to optimize the
fuel flow-rates in different modes of operations of the thermal management system of a prototypical
aircraft. In the current setting, we assumed that the parameters to be optimized for are fixed
for each mode. It is possible to formulate optimal control problems where the control has some
feedback dependence on the state. The feedback dependence on the state can be expressed in terms
of parameters and then one could in principle optimize for these parameters.
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(a) Pareto optimal curve. The x-axis is for C∗
1 as defined in (7.21) and

the y-axis is for C∗
2 as defined in (7.22).

(b) Variation of optimal fuel flow-rates with W .

Figure 7.3: Results obtained using the SAA method for optimal design of TMS
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Chapter 8

Refinement of control and
computation platform

In this chapter we review our previous work [45] to model and analyze hardware architectures in
a probabilistic setting. We provide a way of capturing stochastic effects arising from variations in
performance (e.g. communication delays) as well as failures. In principle, stochastic hybrid systems
could be used to model hardware platforms but a more powerful set of tools are available for finite
state systems. Our approach is then to operate at different abstraction levels as explained in detail
in Chapter 9, where we show that the synthesis of the optimal control laws use vertical contracts
coming from the underlying hardware platform. These contracts are the used as specification to
design the hardware architecture. The tools presented in this section can be used to check that such
contracts are satisfied. This chapter presents one modeling approach for the hardware architecture
leading to a Markov Chain model which can then be analyzed using several methods.

8.1 The Stochastic Automata Network Model

A Stochastic Automata Network (SAN) [46] S = (A, E,⇒) comprises a set of stochastic automata
A = {A(1), ..., A(n)}, a global set of events E, and a relation ⇒⊆ E ×E. A stochastic automaton is
a tuple A(i)(S(i), T (i), L(i), G(i)) where S(i) is a set of states, T (i) ⊆ S(i)×S(i) is a set of transitions,
L(i) : T (i) → 2E is a labelling function that associates a set of events to each transition. The set
of possible system states (not necessarily all reachable) is S = ×ni=1S

(i). Let Π(S) be the set of all
partitions of S and let Λ = ∪P∈Π(S)[P → Q+ ∪ P ∪ {>}] be the set of all functions from partitions
to the union of the positive rationals, a set of parameters P, and a special symbol > which denotes
any rate. The guard function G(i) : T (i) → Λ associates to each transition a state dependent rate.

The relation among events ⇒ (reflexive, antisymmetric and intransitive) imposes restrictions on
the set of possible behaviors of the SAN. If (e1, e2) ∈⇒ we also write e1 ⇒ e2 and we say that e1

implies e2, or e2 is implied by e1. To define the semantics of a SAN, we first define its language, i.e.
the set of possible computation paths. A computation path is a sequence of states and transition
times π = (s0, τ0, s1, τ1, ..) ∈ (S×R+)ω. Such path is valid if it satisfies the following set of conditions

expressed in terms of the state transitions ti = (si, si+1): 1) t
(k)
i ∈ T (k) where we indicate with t

(k)
i

the projection of ti on the states of the k-th automaton, i.e. t
(k)
i = (s

(k)
i , s

(k)
i+1); 2) G(k)(t

(k)
i )([si]) 6= 0,

where [si] is the partition containing si; 3) Either L(i)(t
(k)
i ) = ∅ or, ∀ e ∈ L(i)(t

(k)
i ), if e is implied

by some e′ then there must be a transition t
(j)
i for some automaton A(j) such that e′ ∈ L(j)(t

(j)
i ).

Time ti is the time spent in state si and depends on the transition rate at si. The transition
rate is not straightforward to define. Consider two events in a relation e1 ⇒ e2 and the two
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Figure 8.1: Example of model of a processing element with two threads a scheduler and I/O buffers.

respective transitions t1(s
(k)
i , s

(k)
i+1) ∈ T (k) and t2(s

(j)
i , s

(j)
i+1) ∈ T (j). The rates of this transitions are

G(k)(t1)([si]) and G(j)(t2)([si]), respectively, which might be different. During reachability analysis,
the rate of the implied transition will be constrained to be equal to the rate of t1. For illustration
purposes and to keep the exposition simple, we will use binary guard functions. A binary guard
function maps a transition to a subset Λ′ ⊂ Λ, where Λ′ only contains mappings whose domains are
the binary partitions of the state space. Moreover, one element of the partition must map to zero.
We refer to binary guard functions as to guard conditions.

The language of a SAN is the set of all valid computation paths. It is easy to see that each
computation path is the realization of a Markov Process. In fact, a SAN can be described by its
underlying Continuous Time Markov Chain (CTMC). For a characterization of the probability space
defined by a CTMC, please refer to [12]. The type of SAN presented in this section provides the
basic elements to capture complex synchronization patterns among the transitions of the automata
of the SAN.

8.2 Examples of architectural components

A model of a processing elements is shown in Figure 8.1. The model comprises two threads, a
scheduler, and two I/O buffers (one for transmitting, and one for receiving data). The thread model
is an automaton with three states: in the sleep state the thread is inactive; in the ready state the
thread is ready to be executed, but needs to wait to get ownership of the shared computational
resource; in the run state the thread is executed on the processing element. This model is an
abstraction of the thread model defined by the AADL language (one of the few behavioral aspects
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Figure 8.2: Example of model of I/O buffers and a communication protocol.

included in the standard). The scheduler implements a first-come-first-served policy. We have
labelled each transition with one event but we have not shown guard conditions.

The thread activation policy determines when the transition from the sleep state to the ready
state occurs. For example, a thread in the AADL language is associated with a dispatch protocol
property. A thread can be dispatched periodically, aperiodically, sporadically, or it can be dispatched
only once until completion. The transition from the ready state to the run state is driven by the
scheduler. The scheduler decides which thread takes ownership of the processor. The scheduler starts
from the idle state and it can transition to the left or right states to grant the exclusive use of the
processing element to the left or right thread, respectively. Consider transition (idle, right). This
transition is only taken when the right thread is ready to run, which correspond to the set of system
states Srr = {s ∈ S|s(2) = ready}. Thus G(3)(idle, right)(¬Srr) = 0 while G(3)(idle, right)(Srr)
corresponds to the overhead associated with loading the context of the new thread to be executed.

When the transition is taken, the thread must move to the run state, thus e
(3)
i2r ⇒ e

(2)
r2r. The thread

can now be executed. When the execution is over, the thread transitions back to the sleep state and

releases the resource, i.e. e
(2)
r22 ⇒ e

(3)
r2i. Guard conditions and synchronizations are similarly defined

for the left thread. The I/O buffers are one place buffers directly used by the application software
while in the run state. In this example we showed a first-come-first-served scheduler, but other
schedulers can be modeled. Also notice that performance metrics are captured by exponentially
distributed transitions. This is not realistic in general and there are techniques to deal with this
problem such as the use of phase-type distributions [43], or the solution of the underlying Markov
Regenerative Process [30].

Figure 8.2 shows the model of a communication protocol that allows to transfer data between the
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λ System P (sleep) P (ready) P (run)
sys2 0.275 0.058 0.666

8000 sys4 0.380 0.038 0.581
sys4f 0.371 0.038 0.591
sys2 0.378 0.040 0.581

4000 sys4 0.453 0.025 0.522
sys4f 0.439 0.025 0.535
sys2 0.459 0.026 0.515

2000 sys4 0.505 0.016 0.479
sys4f 0.489 0.016 0.495

Table 8.1: Probabilities of being in the sleep, ready or run state at t = 1ms for thread th2.

I/O buffers of two threads. The protocol model is not so different from the scheduler of Figure 8.1.
In fact, it manages access to a communication medium (the shared resource) from multiple sources.
The scheduling policy implemented by the protocol is token-ring. The initial state is left meaning
that the left I/O TX buffer is checked first. If it is empty, then the protocol passes to check the right
buffer. If the left buffer is full, then it is served by moving the message to the right receiving buffer.

This is achieved by two synchronizations as follows: e
(8)
sl ⇒ e

(4)
f2e and eld(8)⇒ e

(7)
e2f . While the model

seems intuitive, the difficulty lies in the potentially large set of implementation options associated
with this simple transfer. To mention a couple, we have assumed that the routing of messages is
statically defined. This allows to solve the transfer of messages among queues using synchronizations
only. As a matter of fact, we are not even defining messages. The definition of message types in
the architecture is only used to determine the average transfer delay associated with the transition
(l2r, right). Further, we have assumed an overwriting policy for the buffers, i.e. the protocol does
not check whether the RX buffer is full before executing transition (l2r, right).

8.3 Example of architectural analysis

We consider a distributed architecture composed of processors running a single thread and communi-
cating over a token ring bus. This architecture is built using the templates presented in Section 8.2.
Each thread thi transitions from the sleep state to the ready state when the transmission buffer TXi

is empty. When the thread is scheduled to run, it first reads from buffer RXi, and then writes to
TXi. The token ring bus serves the TX buffers and broadcasts their content to all RX buffers in the
system. We consider transition rates of 105, 104 and 103 for transitions (sleep, ready), (ready, run)
and (run, sleep) respectively. We also consider a rate of 8000 for the protocol to pass the token
among users, while we leave the data transmission rate λ as a parameter (to mimic the effect of
different packet sizes). We consider three architectures: sys2 with two processors (182 reachable
states), sys4 with four processors (24708 reachable states) and sys4f with 4 unreliable processors
(2118680 reachable states). Unreliable processors can fail with rate 0.0003, and recover from failure
with rate 0.3. The results of the analysis are shown in Table 8.1 where we report the probability of
being in the sleep, ready or run state for thread th2 at time t = 1ms.

The results show two obvious trends. When the number of processors increases, the token rotation
time increases and the time a task spends in the sleep state also increases. If the transmission time
increases, the time spent in the sleep state also increases. Interestingly, the time spent in the run
state is higher for sys4f than for sys4. This is because thread th2 can leverage the time when other
processors are silent because of a failure.

These results can be used to determine the execution rates of a tread mapped on a process or the
maximum transmission rate of data from a sensor. The result can then be used to check whether
the architecture is capable of supporting a given control function.
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Chapter 9

Towards optimal design of the
control, computation and
communication platforms

In this chapter we describe our methodology for correct-by-construction design of the control, com-
putation and communication platforms. Some previous work in this area will be reviewed that are
mainly concerned with the optimization of hardware platform for metrics such as cost and extensibil-
ity. The novelty of our approach is twofold: 1) we will define metrics that are related to vulnerability
in a general sense, namely the probability that the system will catastrophically fail to deliver the
desired level of performance and we will optimize the control, computation and communication plat-
form to minimize vulnerability; 2) we will start the design exploration activity at a much higher
level, namely the design of distributed control architectures. The problem of exploring the functional
architecture of the control algorithm (from centralized to distributed) is still an open problem. In
fact, there is no systematic way of approaching such problem. A typical approach consist in first
designing a distributed control algorithm that solves a given control problem and then analyzing its
properties to check whether control requirements are met. We will provide application examples of
our design flow.

9.1 Introduction

A complex dynamical system is the composition of blocks that represent mechanical and electrical
components. These blocks have their dynamics described by a set of differential equations ẋ =
f(x, u, uc) where in general x is the state vector associated with that block, u is a vector of input
coming from other blocks and uc is a set of control inputs that can be forced by a controller. We
call this interconnection of blocks the physical architecture (Figure 9.1).

The cyber architecture is decomposed into two levels: the control architecture and the embedded
execution platform architecture. The control architecture is the result of the composition of several
agents that implement control functions. Such agents cooperate to drive the dynamic evolution of
the physical agents towards a desired behavior. Controllers generate signals uc,i for each physical
agent and sense (either directly or indirectly) their state xi. The control functions are implemented
by processing elements in the embedded platform. Figure 9.1 a typical example where all control
agents are mapped on a triple redundancy computing platform. A communication network is also
present to implement the communication among sensors, actuators and control blocks.

The correct operation of the system depends on several factors. We are concerned with the
probability that components may fail rather than with the correctness of the control algorithms.
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Cyber-physical architecture

_x1 = f1(x1; u1; uc;1) _x2 = f2(x2; u2; uc;2) _x3 = f3(x3; u3; uc;3) Physical architecture

Cyber architecture

Control 

architecture

Embedded 

execution 

platform 

architecture

Figure 9.1: The levels of a cyber-physical architecture.

In fact, we assume that controllers can be synthesized and we will also show a methodology for
correct-by-construction control design later in this chapter. Failure is associated with hardware
components such as the mechanical equipment in the physical architecture, the processing boards,
communication links, sensors and actuators. We consider several failure models:

• For hardware failures we may have two different models. If the failure is permanent, then the
component is no longer available after the failure occurs. This is the case where there is no
redundancy in the system which means that there is no other component that can be used as a
replacement. If redundancy is built in the system, then a component may fail and recover after
a certain amount of time. In this case there is a limit on the maximum number of consecutive
failures. The failure probabilities can be directly obtained by looking at the mean time before
failure of a component.

• We consider damages as particular types of failures. Damages are permanent failures but their
occurrence is determined by external events and the use of a probabilistic model may or may
not be the best way of representing them.

• Performance failures are deviations from nominal performance values. Performance failures
can be characterized using a probabilistic model, meaning a probability distribution around
the nominal value. A typical example is network delay. Chapter 8 discusses some examples of
modeling the performance variations.

We will detail these failure models in the following sections and we will then abstract them
at up to the control architecture level so that controller analysis and synthesis can be performed
without the additional complexity induced by the embedded platform. This abstraction will allow
us to trade-off centralized versus decentralized control strategies with the objective of minimizing
vulnerability while providing acceptable performance.

9.2 Abstraction of the embedded platform

The complexity associated with a joint exploration of the control architecture and the embedded
platform architecture makes the problem intractable. The decomposition of the two problems relies
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Failure Modes

_x1 = f1(x1; u1; uc;1) _x2 = f2(x2; u2; uc;2)

C1 C2 C3

Connections

OP FAIL

¸1

½1

OP FAIL

¸2

OP FAIL

¸3

Figure 9.2: Example of a physical architecture with a three-agent controller. Each controller is
associated with a state machine representing the failure mode (OP means that the controller is
operational while FAIL means that the controller is faulty).

on the abstraction of the embedded platform metrics at the control level. The abstraction is created
as a result of matching the semantics of the language used for the description of the control algorithm
with the fault model of the platform.

Both the physical architecture and the control algorithm are described using the continuous time
model. Each agent is defined in terms of a set of differential equations. Agents communicate over
shared signals (i.e. continuous variables that are shared among the blocks). The semantics of the
composition of agents is defined by the flat set of differential equations that can be obtained by
imposing equality constraints between the outputs and inputs whenever they are connected.

We first abstract the failure probabilities of processing and communication elements. Consider an
agent that is part of the control architecture. The agent will be ultimately executed by a processing
element that may fail. When the processing element fails, the agent is not available anymore. We
assume that the failure is silent, meaning that the failed processor does not produce erroneous data,
but rather stops transmitting. In this case, another control agent that expects data from the faulty
agent realizes (perhaps using timeouts) that input updates are not available and assumes for them
some nominal values. Another strategy for the control agent is to use the last received input for
future computations. These two failure models can both be adopted with their advantages and
disadvantages. Notice, for instance, that resorting to a nominal value may represent a step change
at the input of a controller.

Figure 9.2 shows a system where the control architecture has three control agents C1, C2 and C3.
They can sense the state of the agents in the physical architecture and can send control commands.
We have abstracted the interconnection among the control agents into a single block that, as will
be detailed later, is also part of the design of the decentralized control algorithm. Each controller is
associated with a state machine that captures the failure modes of that controller. In the OP mode,
the control agent is operating normally as intended by design. In the FAIL mode, the agent is faulty
and its outputs are either kept constant to the value right before the failure or they are set to a
nominal value. We capture permanent faults, as in the case of C2 and C3, and transient faults, as
in the case of C1. Using multiple OP states and FAIL states allows to model systems than can fail
and recover from failure a bounded number of times.

The stochastic automaton that capture the failure modes of the different control agents can be
composed to yield a stochastic automaton that captures the failure modes of the composed system.
The model described in [46] is an effective way of capturing not only independent faults, but also
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faults that are correlated. For example, suppose that both C2 and C3 are mapped on the same
computing resource. Then, their failures happen simultaneously, meaning that when C2 transitions
to the FAIL state, so does C3 and vise-versa. Each failure state at the system level correspond to
a different controller applied to the physical architecture because each faulty control agent changes
the dynamics of its outputs to be constant at a nominal value. Thus, the performance of the
decentralized control algorithm also changes depending on the failure mode.

A similar model can be used to abstract failures associated with the communication network.
Each link in the decentralized control architecture can be associated with a failure rate. The failure
rate can be though of as a packet corruption or a packet drop (transient failures) or as a permanent
damage to the network link. If a link fails, each control agent that uses that link as input assumes
either a nominal value or the last known good value.

The abstraction of the performance failures turns out to be more complicated. Modeling delays
in the communication network (for example) and including this effect in the dynamics of the system
leads to differential equations which are difficult to solve. In practice, the implementation of de-
centralized control algorithms is based on timeouts. If an input is not received within a given time
window, then it is assumed that the packet has been dropped and therefore an excessive delay can
be modeled as a packet drop (i.e. a transient failure). The probability of this event to occur can be
computed for a given communication delay distribution.

9.3 Vulnerability metric and analysis method

We will define vulnerability in terms of the probability that the system fails catastrophically. Events
that can cause such type of failures are application dependent and need to be identified by designers.
For air vehicles, the inability to fly safely is of major concern. Thus, for these type of systems, any
event that causes the vehicle to crash is catastrophic. We realize that this approach to the definition
of vulnerability may seem subjective. However, we believe that this initial event classification which
is application dependent is unavoidable.

We distinguish between a catastrophic event and its effect. The effect is the manifestation of the
occurrence of the event which leads to the undesired result of a crash. The event is defined as the
transition into a state from which the system cannot recover and that leads to a crash. The state
of the system is in general hybrid as defined in Chapter 2. Let S = ∪q∈Q{q} × Rd(q) be the hybrid
state associated with a system. A catastrophic event can then be defined as the transition of the
system into a subset of the state space B ⊆ S called bad set. We are interested in a bounded time
window ∆ (also called horizon) which is typically identified by the length of a mission. Therefore,
we define vulnerability as follows:

Definition 21 (Bounded vulnerability). Given a stochastic hybrid system H with hybrid state space
S and a bad set B ⊆ S, the bounded vulnerability of H is P ({s̃(t)}t≤∆ ∈ B), i.e. the probability that
the stochastic process s̃(t) generated by H enters the bad set before time ∆.

This definition provides a way of computing vulnerability of a system. Once the bad set has been
defined, vulnerability entails solving the reachability problem for the stochastic hybrid system which
is in general hard (as shown in Chapter 2). The analysis can be simplified in the case of continuous
controllers where the discrete transitions of the hybrid system are only determined by failure rates.
In this case, transitions do not depend on the continuous states and more efficient algorithms can
be developed to compute vulnerability.

In the propose approach, we start from a model of the physical and control architecture as a set
of continuous systems. Then, we associate failure models to each components. The combination
of these two models leads to a hybrid dynamical system where mode changes are probabilistic.
Moreover, when an agent or a communication link fails, the dynamics of the system is simplified
because some of the variables are kept constant.
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The problem that we will address is the synthesis of the distributed control architecture taking
into account physical and the embedded architecture. The synthesis problem asks for the decentral-
ized control architecture representing an optimal trade-off between vulnerability and cost.

9.4 Control/Platform Architecture exploration for thermal
management system

In this section, we apply a synthesis methodology to the thermal management system (TMS) de-
scribed in the previous chapters. The objective is to develop tools that are able to derive auto-
matically a system which satisfies some properties which, therefore, do not need to be verified. We
also aim at exploring the design space by selecting promising systems which satisfy those properties
while being optimal with respect to cost. Using the TMS as an example, we describe a two-step
process to perform the design exploration. The first step is to design the control architecture that
is implemented on the embedded platform to make the physical system perform as desired. In this
step, all control architectures are enumerated and the control algorithm that can be implemented
using each control architecture is optimized using tools from optimal control theory. The second
step is to study the effect of the platform features (like processing element failure rates) on the
performance of the controlled system.

The control architecture and the embedded platform architecture can either be distributed or
centralized in nature. The degree of decentralization for both the control architecture and the
platform architecture can be varied and should be considered a part of the design process. Note
that the choice of the control architecture affects the design of the communication architecture
and other platform design parameters. The control architecture provides the constraints for the
communication synthesis. There is no unique platform architecture on which to implement a given
control architecture. Among the various platform architectures on which it is possible to implement
a control architecture, we need to choose the one that minimizes some desired metric.

There may be various costs associated with the choice of the control architecture and platform.
Some of them are :computational cost, communication cost, vulnerability and performance optimality.
The table below gives a rough summary of the effects of various combinations of control architectures
and platforms architectures on these various objectives.

XXXXXXXXXXControl
Platform

Decentralized Centralized

Decentralized Low computation cost Low computation cost
Low communication cost High communication cost
Performance not optimal Performance not optimal

Vulnerable More vulnerable
Centralized High computation cost High computation cost

High communication cost High communication cost
Optimal performance Optimal performance

Least vulnerable Vulnerable

9.4.1 Control Architecture Design Problem

First we discuss the design of the control architecture. The control architecture is the result of the
composition of the controller agents that implement the control functions. The controller agents
cooperate to drive the dynamic evolution of the physical system as desired. A key element in the
design of the control architecture is to decide which states of the controlled system should each
controller agent have feedback dependence upon. For example, consider the following controlled
dynamical system:
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ẋ1 = f1(x1, x2, ..., xN , u1)

ẋ2 = f2(x1, x2, ..., xN , u2)

...

...

ẋN = fN (x1, x2, ..., xN , uN )

(9.1)

Each xi ∈ Rmi represents the state of the i-th subsystem. Each subsystem may correspond to a
physical component like a pump or heat-exchanger and the components of the vector xi correspond
to internal variables for that physical component. The dynamics of the state for each subsystem
possibly depends on the states of every other subsystem. But typically, the dynamic dependence is
sparse. In other words, the Jacobian ∂f

∂xi
is sparse. The inputs ui directly controls the dynamics of

only the i-th subsystem. But the controls ui could have some feedback dependence on the states
of the other subsystems. The key step in the design of the control architecture is deciding which
subsystems the control ui should have feedback dependence on. For example, if the control algorithm
is completely decentralized, ui would be such that

ui = Ki(xi). (9.2)

i.e., the control ui has feedback dependence only on the state of the local sub-system. For a
completely centralized algorithm ui would have feedback dependence on the states of all sub-systems.
Formally that means

ui = Ki(x1, x2, ..., xN ). (9.3)

Note that once the feedback dependence is decided, one still needs to design the feedback laws
so as to obtain some desirable performance. In other words, one needs to ’shape’ the functions Ki

so that the system performs in a desired manner. This can be done using tools from optimal control
theory as described in the following example . The feedback dependence can be represented using
a graph. Consider the directed graph U = (VU , AU ) where each element in the set of nodes VU
represents a sub-system. If the arc (i, j) is an element of the set AU , this means that the state of
sub-system i influences the control action in sub-system j. In other words, the controller for sub-
system j has some feedback dependence on the state of sub-system i. For a fully decentralized control
architecture, the graph U would be an edgeless graph. For a fully centralized control architecture,
the graph U would be a strongly connected graph. The control architecture design involves the joint
optimization of the graph U and the corresponding functions Ki that such that some performance
metric is minimized.

9.4.2 vulnerability Optimizaiton Problem

As discussed in Section 9.2, the control functions are implemented on processing elements in the
embedded platform. Permanent faults and transient faults can be modeled using the stochastic
automata shown in Figure 9.3. If the physical system can be modeled as a stochastic hybrid system,
the failure models for the processing elements can be composed with the stochastic hybrid model
for the physical system to give a stochastic hybrid model for the entire controlled system. This
controlled system can be analyzed using tools like reachability analysis or statistical model checking
algorithms (as described in the previous chapters) to compute the vulnerability of the system.

Assume we associated a failure models to each component in the system. Notice that the failure
model can capture actual mechanical and electronic failures, or possible battle damages. A more
reliable component could be one where the probability of failure is lower or that can fail and recover
multiple-times (e.g. redundant hardware). The optimization problem is to minimize the cost of the
system subject to vulnerability constraints. The cost function depends on the following parameters:
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(a) Permanent failure (b) Transient failure

Figure 9.3: Stochastic automata to model failures of processing element.

• Failure rate: We assume that the cost increases exponentially with the inverse of the failure
rate.

• Number of recoveries. We assume that the cost is linear in the number of times an agent can
recover from a failure.

9.4.3 Design exploration of TMS

We apply the design methodology described above to the TMS described in previous chapters. The
TMS can be thought of as a composition of four subsystems. The four subsystems are fuel tank, fuel
pump, fuel-oil heat exchanger and fuel-air heat exchanger. Figure 9.4 shows a schematic of these four
subsystems together with the internal states associated with each subsystem. The blue solid arrows
indicate physical connections between the subsystems and the red dashed arrows indicate links in
the control architecture. The fuel pump and fuel-air heat exchanger have local controllers associated
with them. The controller for the fuel pump can change the fuel flow-rate (mout) depending on the
state of system. The controller for the fuel-air heat exchanger changes the heat sink efficiency (f)
based on the state of the system.

The dynamics for the states in the controlled TMS are described by

Physical states of TMS:

Ṁ = −mf

Ṫ =
1

M
(minTin −moutT +mfT )

where Tin = Tf + f (Tair − Tf)

and where Tf =
HL

moutCsp
+ T

Fuel-pump controller:

ṁout = G1(Tf − Tset)−G2(f)

Fuel-air HEX controller:

ḟ =0.5cos2(θ)
(
L1(T − T̄ )− L2(mout −mf )

)
θ̇ =cos(θ)

(
L1(T − T̄ )− L2(mout −mf )

)

(9.4)

The dynamics of the auxiliary variable θ is chosen so that ḟ = 0.5cos(θ)θ̇ = d
dt (0.5sin(θ)), and

therefore f(t) = 0.5 + 0.5sin(θ(t)), if θ(0) is chosen to be sin−1
(
f(0)−0.5

0.5

)
. Thus f(t) is guaranteed
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Figure 9.4: TMS as a composition of four sub-systems. The blue solid arrows indicate physical
connections between the subsystems and the red dashed arrows indicate links in the control archi-
tecture.
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to always remain bounded (i.e. 0 ≤ f(t) ≤ 1).The control parameters G1, G2, L1, L2 ≥ 0.0 are
feedback gains that need to be optimized for. Tset is a set-point temperature at which we desire the
fuel-combustor temperature (Tf) to be close to. T̄ is a set-point temperature at which we desire
to keep the fuel-tank temperature. The feedback dependence on Tf is such that the fuel flow-rate
(mout) increases if Tf is above Tset and vice versa. Similarly, the feedback dependence on T is such
that the heat sink efficiency (f) increases if T is above T̄ and vice versa.

For control architecture exploration, we consider all possible combinations of feedback dependen-
cies. For a given control architecture, we optimize for the control parameters so that a performance
metric is minimized. For the control architecture exploration, one of the feedback dependencies can
be made to be absent by enforcing a constraint on the corresponding feedback gain. For example,
by enforcing the constraint 0 ≤ L1 ≤ 0 in the optimization procedure, we make the dynamics of the
fuel-air HEX to be independent of the fuel-tank temperature.

For a fixed control arhitecture, we optimize for the control parameters G1, G2, L1 and L2. We use
a similar optimization procedure as described in Chapter 7 to find the optimal control parameters.
We use IPOPT ([52]) to perform the optimization. The cost-function used is a weighted sum of the
deviations of the fuel temperatures and the magnitude of the fuel-flow rates. More precisely, the
cost-function is

C =
1

2

∑
k

(
Tfk − Tset

)2
+

1

2

∑
k

(
T k − T̄

)2
+
W

2

∑
k

(
mk
out

)2
(9.5)

The variables that need to be optimized for include both the state variables Mk, T k,mk
out, f

k, θk

and the control parameters G1, G2, L1 and L2. In our notation, T k is the state of the system at
time k. Following the procedure described in Chapter 7, we discretize the differential equations and
derive the constraints imposed by the system dynamics. The constraints can be written as:

gk1 = Mk+1 −
(
Mk − δ.mf (k)

)
= 0

gk2 = T k+1 −
(
T k +

δ

Mk

(
mk
inT

k
in −mk

outT
k +mk

fT
k
))

= 0

gk3 = mk+1
out −

(
mk
out + δ

(
G1(Tfk − Tset)−G2(fk)

))
= 0

gk4 = fk+1 −
(
fk + δ0.5cos2(θk)

(
L1(T k − T̄ )− L2(mk

out −mk
f )
))

= 0

gk5 = θk+1 −
(
θk + δcos(θk)

(
L1(T k − T̄ )− L2(mk

out −mk
f )
))

= 0

(9.6)

Here δ is the size of the discrete time-step and from the above equations we have

T kin = Tfk + f(Tair − Tfk)

and where Tfk = T k +
HL

mk
outCsp

.
(9.7)

Note that the rate of fuel consumption (mf ) is constant within each mode. More precisely

mk
f =

{
mtaxi
f if 0 ≤ k < ∆taxi

mfly
f if ∆taxi ≤ k < ∆taxi + ∆fly.

(9.8)

Since the cost-function does not depend explicitly on the control parameters, we have

∂C

∂G1
=

∂C

∂G2
=

∂C

∂L1
=

∂C

∂L2
= 0.0. (9.9)
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The gradient of the cost-function with respect to the temporal states is given as

∂C

∂Mk
= 0.0,

∂C

∂T k
=
(
Tfk − Tset

)
+
(
T k − T̄

)
,

∂C

∂mk
out

=
(
Tfk − Tset

) −HL

(mk
out)

2Csp
,

∂C

∂fk
= 0.0,

∂C

∂θk
= 0.0.

(9.10)

Similarly the Jacobian of the constraint equations are computed. Some representative elements of
the Jacobian matrix are given below.

∂gk2
∂mk

out

=
−δ
Mk

(
(T kin − T k) +mk

in(1− fk)
−HL

(mk
out)

2Csp

)
,

∂gk3
∂G1

= −δ(Tfk − Tset),

∂gk4
∂L2

= −δ0.5cos2(θk)×−(mk
out −mfk).

(9.11)

The IPOPT software takes in as input the user-provided routines that compute the cost-function,
the gradient of the cost-function and the Jacobian of the constraint equations and returns optimal
values for the control parameters G1, G2, L1 and L2. The optimal values of the control parameters for
the different control architectures are obtained by imposing constraints on the corresponding control
parameters in the optimization problem. For example, to optimize for an architecture where the
fuel-rate (mout) does not depend on the fuel combustor temperature (Tf), we impose the constraint
0 ≤ G1 ≤ 0. Or to optimize for an architecture where the heat-sink efficiency f does not depend on
the fuel-tank temperature (T ), we impose the constraint 0 ≤ L1 ≤ 0.

In the rest of this chapter, the different possible control architectures are represented by a numeric
code. For example, the numeric code 0100 represents the architecture with the following constraints
imposed on the control parameters:

0 ≤ G1 ≤ 0

0 ≤ G2 ≤ ∞
0 ≤ L1 ≤ 0

0 ≤ L2 ≤ 0

(9.12)

In other words, the architecture with numeric code 0100 is such that the fuel-flow rate has feedback
dependency on the heat-sink efficiency (f), but all other feedback dependencies are absent. We
optimize the control parameters for nominal values of the flying time and taxing time (∆taxi =
600,∆fly = 4050) and for the same system parameters shown in Table 7.1, but with Tset = 330 and
T̄ = 280. The optimal values of the control parameters for the different control architectures are
shown in Tables 9.1 and 9.2. Figure 9.5 shows the trajectories for the states of the TMS (T and Tf)
corresponding to the optimal values of the control parameters obtained for architectures 1111 and
1001. Figure 9.6 shows the corresponding trajectories for the controlled states of the TMS (mout

and f).
As discussed in Chapter 9, we use stochastic automata to capture the failure modes of the con-

trollers. The stochastic automate to capture the failure modes of the controllers are composed with
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(a) Fuel-tank temperature, T

(b) Fuel combustor temperature, Tf

Figure 9.5: Plots of the fuel-tank temperature (T ) and fuel combustor temperatures (Tf) for the
optimal values of the control parameters obtained for architectures 1111 and 1001.
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(a) Fuel flow-rate, mout

(b) Heat sink efficiency, f

Figure 9.6: Plots of the fuel flow-rates (mout) and the heat sink efficiency (f) for the optimal values
of the control parameters obtained for architectures 1111 and 1001.

91



Approved for Public Release, Distribution Unlimited.

Architecture G1 G2 L1 L2

1000 0.0130 0.0 0.0 0.0
1001 0.0134 0.0 0.0 0.0016
1010 0.0130 0.0 0.0 0.0
1011 0.0134 0.0 0.0 0.0016
1100 0.0159 0.0473 0.0 0.0
1101 0.0160 0.0658 0.0 0.0017
1110 0.0159 0.0488 0.0 0.0
1111 0.0160 0.0658 0.0 0.0017

Table 9.1: Optimal control parameters in the taxi mode for different control architectures.

Architecture G1 G2 L1 L2

1000 0.0 0.0 0.0 0.0
1001 0.016047 0.0 0.0 0.000157
1010 0.0 0.0 0.0 0.0
1011 0.016047 0.0 0.0 0.000157
1100 0.042945 0.669275 0.0 0.0
1101 0.032050 0.216040 0.0 0.000257
1110 0.038578 0.560197 0.0005 0.0
1111 0.032050 0.216040 0.0 0.000257

Table 9.2: Optimal control parameters in the flying mode for different control architectures.

the stochastic hybrid system described in Equation 9.4. We then analyze the composed stochastic
hybrid model to study how the vulnerability of the system changes with respect to parameters in
the failure models. In this study, we consider only permanent faults as described in Chapter 9. In
the OP mode, the controller is operating normally as intended by design. In the FAIL mode, the
controller is faulty and its outputs are set to a nominal value. The controller switches from the OP
mode to the FAIL mode with a probability λ. For implementing a processing element that fails with
a certain probability λ, there is a certain cost associated with it. As a representative cost, we use
the relation

H(λ) =
log(λ)

log(λ0)
(9.13)

In other words, the probability of the processing element to fail decreases in an exponential fashion
as its cost increases. We are interested in studying how the vulnerability of the system changes as
the cost for the implementation of a platform is increased (or reliability is increased).

For this particular case study, the condition for checking vulnerability is as follows. We compute
the fraction of time spent by the trajectory (T k, T fk) outside the set (250, 310) × (300, 360). If
this fraction of time is greater than 0.01, we declare the system to be vulnerable. We generate
many realizations for the trajectories of the composed stochastic hybrid system by Monte-Carlo
simulations. We estimate the vulnerability as the fraction of the number of realizations for which
the system was vulnerable. Figure 9.7 shows how the vulnerability of the system changes with
respect to the cost of the processing element. From the plots in 9.7, one can figure out the cost
of the processing element required to guarantee that the vulnerability will be below a prescribed
threshold. These plots are for architectures 1001 and 1010. These architectures perform as well as
the architecture 1111 in terms of performance optimality and vulnerability. Since these architectures
have fewer links than the architecture 1111, they are definitely more desirable.
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(a) Architecture 1001

(b) Architecture 1010

Figure 9.7: Vulnerability vs. cost plots for architectures 1001 and 1010.
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9.5 Summary and future steps

In this chapter, we have described a two-step procedure to explore the effects of the control architec-
ture and reliability of platform processing elements on the vulnerability of the thermal management
system. The control architecture exploration involves the enumeration of all possible architectures
and optimizing for the control algorithm that can be implemented on each control architecture. In
the future, it would be desirable to replace this enumeration step by more efficient approaches where
the critical control links are discovered automatically. Simultaneous optimization of the control
architecture and the platform architecture is challenging in general. As of now, it is possible to
design the platform features (like the processing elements) only once the control architecture has
been fixed. It would be desirable to develop approaches where the platform features can be jointly
optimized for with the control architecture.
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