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ABSTRACT
Constraint-driven Communication Synthesis enables the automatic

design of the communication architecture of a complex system from

a library of pre-defined Intellectual Property (IP) components. The

key communication parameters that govern all the point-to-point

interactions among system modules are captured as a set of arc

constraints in the communication constraint graph. Similarly, the

communication features offered by each of the components available

in the IP communication library are captured as a set of feature re-

sources together with its cost figures. Then, every communication

architecture that can be built using the available components while

satisfying all constraints is implicitly considered (as an implemen-

tation graph matching the constraint graph) to derive the optimum

design solution with respect to the desired cost figure. The corre-

sponding constrained optimization problem is efficiently solved by

a novel algorithm that is presented here together with its rigorous

theoretical foundations.

Categories and Subject Descriptors
J.6.1 [Computer Applications]: Computer-Aided Engineer-
ing—CAD .

General Terms
Algorithm.

Keywords
Communication Synthesis, Systems-on-Chip, Network Design.

1. INTRODUCTION
In this work we propose a novel approach to design the

communication architecture for a system of computational
modules whose interaction is specified from an abstract point
of view as a collection of communication requirements on a
set of point-to-point unidirectional “virtual” channels. By
abstracting away the specific functionality of each module,
we can focus on exploring the various communication topolo-
gies that can be built composing a set of library elements
that include “passive elements” (links) as well as active ones
(repeaters, switches), each of them coming with a fixed cost
function that captures an application-specific optimality cri-
terion. The proposed approach lies on top of a mathematical
model that allows us to fully separate computational issues
from communication ones. While each computational mod-
ule acts on the data streams that travel within the system
(reading from input channels and writing new data onto
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the output channels according to its functionality) the com-
munication elements limit themselves to transfer the data
between two points (the links), two receive and re-transmit
the same data (repeaters) or to route in the proper direction
(the switches). This clear task division allows us to focus
on the complete exploration of all the possible communi-
cation architecture topologies that can be built composing
these primitive building blocks. In fact, we limit ourselves
to three main composition types to physically implement
the virtual channels: the segmentation of long channels by
inserting repeaters between shorter links, the duplication
of bandwidth-challenged channels by adding extra paral-
lel links together with a pair of mux/demux switches, and
the merging of distinct channels (which generally involves
segmentation and duplication). Different from previous ap-
proaches to the problem of communication synthesis, we rely
on the definition of a fine-grain library whose elements are
combined to derive a communication topology that tightly
match the system structure. The proposed algorithm dis-
cards all the sub-optimal local solutions, while generating a
core set of candidate channel implementations from which
it picks the optimum-cost subset based on the library cost
functions. By composing this subset the algorithm returns
the detailed topology of the final optimum-cost architecture
that is guaranteed to satisfy all the original requirements.

Among the several related papers published in recent years,
the authors of [3] split the development of the communica-
tion architecture in two steps: channel binding and channel
mapping. The former binds virtual communication units
to high-level communication channels, while the latter asso-
ciates to each unit a tree of alternative physical implemen-
tations from a library. Then a depth-first search strategy
is used to derive an optimal solution. In [6] and [7] the
design of the communication architecture is done with an
exploration of different solutions validated by a fast perfor-
mance simulation (based on a detailed characterization of
the library components). The authors of [9] assume that
the network topology is given and find an implementation
that allows to achieve very high performance by sending
control signals and deadlines on the delivery of the message
in advance to the corresponding data. The approach of [2]
is similar to the present one, but specialized to ATM net-
works: the problem is to select the topology of a network
composed of links specified in a library with their speed
and cost. Differently from our approach this paper assumes
that the location of the intermediate communication nodes
is fixed and the optimization is limited to link selection.

2. THE MODEL
The abstract model to specify a communication system

is represented in Figure 1 and consists of a set of com-
putational modules communicating through point-to-point
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Figure 1: Model of Communication Requirement.

unidirectional communication “virtual” channels that are
connected to the modules by means of input/output ports.
A module may communicate with another module through
multiple unidirectional channels (in both directions). For
each entering (leaving) channel connected to the module
there is a corresponding dedicated input (output) port. Com-
munication requirements are specified for each channel as
a set of two parameters: the distance to be covered and
the required bandwidth. Our intent is to use this model
as a basic common starting point to define the communi-
cation specifications of various kinds of systems, such as a
“System-on-Chip”, a multi-chip multi-processor system, or
a local area network (LAN). Naturally, the basic model will
be appropriately extended/refined for each particular ap-
plication. For instance, in case of a “System-on-Chip”, a
channel could represent the set of wires implementing the
address bus that a processor uses to access a cache memory
and a certain required channel bandwidth could be speci-
fied in gigabyte per second. Furthermore, for each port of
every computational module on the chip a certain location
could be specified, thus making it possible to compute the
Manhattan distance between any two communicating ports.
On the other hand, if we are studying how to implement
a LAN and we want to evaluate whether to realize it as a
fiber-optic network or a wireless network, (or a combination
of the two), the set of channels could just capture all the
specified links among the clients and the servers. Here the
Euclidean distance among all these components could be
sufficient, while for each channel, the bandwidth is usually
specified in gigabit per second.

Independently from the specific application, we follow the
principle of orthogonalization of concerns [1, 5] and we de-
rive from the network a communication constraint graph that
allows us to focus on the design of the communication archi-
tecture while disregarding the functionality of each compu-
tational module in the system. Working with the constraint
graph, we define the constraint-driven communication syn-
thesis problem as the task of finding the communication ar-
chitecture which satisfies all the constraints specified as com-
munication requirements on the channels, while minimizing
a predefined cost function that captures an optimality cri-
terion which must be defined for the specific application.

Definition 2.1. A communication constraint graph, or
simply constraint graph, G = G(V,A) is a directed graph,
where each vertex v is associated to a port of computational
module of the system and each directed arc a (also called,
simply, constraint arc) represents a point-to-point commu-
nication channel between two modules. A position p(v) is
assigned to each vertex v ∈ V , while the following quantities
are associated to each directed arc a = (u, v) and referred
to as arc properties: (1) the arc length (or, distance) d(a)
between vertex u and vertex v, and (2) the communication

bandwidth b(a) on the constrained arc a.

The right-end side of Figure 1 illustrates the communication
constraint graph that is derived from the network on the left-
end side. The previous definition doesn’t specify whether
the position of the vertices should be considered on the plane
or in space, nor which type of distance is used to compute the
arc length. However, for all arcs a = (u, v) in the graph, the
values of d(a) must be consistent with the positions p(u) and
p(v). For instance, in the case of a “System-on-Chip”, the
position of vertex v (corresponding to a module port) will
be given by its coordinates p(v) = (xv, yv) and the length of
the arc a = (u, v) may be computed using the Manhattan
distance between the coordinates of its two vertices a =
|xu−xv|+|yu−yv|. In the sequel, we will rely on the notion of
geometric norm ||p(u)−p(v)|| to identify the generic distance
between two vertices u, v ∈ G.

The set of all arc properties (lengths and bandwidths)
represent the set of design constraints that need to be satis-
fied while deriving a communication architecture that imple-
ments all point-to-point communication channels of the sys-
tem. As discussed in the introduction, we assume that this
communication architecture is realized by putting together
elements taken from a communication library. In particu-
lar, the library may contain several kinds of communication
links, repeaters, and switches. For instance, a communica-
tion link guarantees that a certain flow of information can
be transferred with up to a specified bandwidth between two
ports as long as they lie within a specified distance. Exam-
ples of communication links are optical fiber connections,
wireless links, or metal lines on a chip that can sustain up
to a certain bandwidth given a certain distance. A repeater
is used to connect to links (that are able to sustain a certain
bandwidth) to cover a distance that they would not to be
able to cover stand-alone. A switch, while being able to act
as a repeater, enables the connection of multiple links that
share a specified bandwidth. A multiplexer is a switch that
takes multiple incoming links and “merges” them into one
outgoing link whose bandwidth is larger than the sum of the
incoming one. A de-multiplexer does the inverse function.
In the sequel we define more formally the notion of com-
munication library and we show how putting together these
basic elements and defining a few simple operation to com-
bine them we are able to build a rich set of heterogeneous
communication architectures having various topologies and
bandwidth characteristics.

Definition 2.2. A communication library L = L ∪ N
is a collection of communication links and communication
nodes. Each node n ∈ N has a cost c(n). Each link l ∈ L is
characterized by a set of link properties: (1) the link length
(or, distance) d(l) corresponds to the length of the longest
communication channel that can be realized by this link, (2)
the link bandwidth b(l) corresponds to the bandwidth of the
fastest communication channel that can be realized by this
link, and (3) the link cost c(l), that is defined with respect to
the other links in the library based on an optimality criterion
that varies with the type of application.

The realization of a communication architecture that sat-
isfies the requirements specified by a constraint graph can
be modeled as a set of graph transformations (including the
addition of new arcs and vertices). This leads us to de-
fine a new graph, called implementation graph whose set



of vertices is an extension of the set of vertices of the con-
straint graph. In particular, each vertex in the implementa-
tion graph is either a “computational vertex” (corresponding
to a vertex in the original constraint, i.e. a port of a com-
putational module of the original system) or a newly added
“communication vertex”, corresponding to an instance of a
communication node from the library. Also, every arc in the
graph is mapped to a library link.

Definition 2.3. Given a graph G = G(V,A), a path q =
(v1, a1, v2, a2, . . . , vQ−1, aQ−1, vQ) is an alternating sequence
of distinct vertices and arcs in G, with V (q,G) and A(q,G)
denoting respectively the set of vertices and arcs touched by
q. Furthermore, we define the sub-path of p up to vertex
vj ∈ V (q,G) as sub(q, vj) = (v1, a1, v2, a2, . . . , aj−1, vj).
As for an arc we can define the following path properties:
the length d(q) =

∑Q−1
i=0 d(ai), the path bandwidth b(q) =

min(i=0,...,Q−1{b(ai)}, and the cost c(q) =
∑Q−1

i=0 c(ai), with
c(ai) denoting the arc cost as specified in the following defi-
nition.

Definition 2.4. Given a constraint graph G = G(V,A)
and a communication library L = L∪N , an implementation
graph G′(G,L) = G(V ′ ∪N ′, A′) is a directed graph s.t.:

• for each vertex in V there is a corresponding vertex in
V ′ and vice versa (and they have the same positions),
i.e. there is a bijective mapping function χ : V → V ′

s.t. ∀v ∈ V, ∃v′ ∈ V ′(v′ = χ(v) ∧ v = χ−1(v′) ∧ p(v) =
p(v′)).

• for each vertex in N ′ there is a corresponding commu-
nication node in N , i.e. there is a surjective mapping
function ψ : N ′ → N s.t. ∀n′ ∈ N ′,∃n ∈ N(n =
ψ(n′)). The elements of N ′ are called communication
vertices.

• for each arc in A′ there is a corresponding commu-
nication link in L and they share the values of their
properties, i.e. there is a surjective mapping function
φ : A′ → L s.t. ∀a′ ∈ A′,∃l ∈ L(l = φ(a′) ∧ d(a′) =
d(l) ∧ b(a′) = b(l) ∧ c(a′) = c(l).

• for each arc a = (u, v) in the constraint graph there
is a set of paths P(a) in the implementation graph
connecting χ(u) to χ(v) without passing through any
other computational vertex (but only, possibly, through
communication vertices) that together satisfy the band-
width constraint b(a) as the sum of the bandwidth b(q)
of each path q ∈ P. Formally, ∀a = (u, v) ∈ G,∃P(a) ∈
G′ s.t. ∀q = (n1, . . . , nQ) ∈ P:

1. n1 = χ(u)∧nQ = χ(v)∧∀m ∈ [2, Q−1](nm ∈ N ′).

2. b(a) ≤
∑

q∈P b(q).

The set of paths P(a) is called the constraint arc im-
plementation (or, simply, arc implementation) and its
cost is C(P(a)) =

∑
q∈P c(q).

Definition 2.5. The cost of an implementation graph G′
is defined as 1:

C(G′) =
∑

n′∈N′

c(n′) +
∑

a′∈A′

c(a′) (1)

where c(n′) = c(ψ(n′)) and c(n′) are as of definition 2.4.
1
Note that the “computational vertices” in V are not part of the cost equation,

they may be though as having null cost.

Generally, for a given library there are many possible im-
plementation graphs that satisfy the requirements expressed
by the constraint graph while having different costs. In par-
ticular, one implementation graph, the optimum point-to-
point implementation graph, is guaranteed to exist and it
is derived by implementing a single arc constraint indepen-
dently from all the others present in the constraint graph.

Definition 2.6. Given a constraint graph G = G(V,A)
and a communication library L = L ∪N , a optimum point-
to-point implementation graph G′(G,L) = G(V ′ ∪ N ′, A′)
is an implementation graph such that ∀ai ∈ G,P(ai) has
the minimum cost C(P(ai)) while being subject to the con-
straint that

⋂
ai∈G P(ai) = ∅, i.e. its arc implementations

are disjoint.

The following definition gives a characterization of all pos-
sible structures for the arc implementations in an optimum
point-to-point implementation graph.

Definition 2.7. Given a constraint graph G = G(V,A) a
communication library L = L ∪ N , and an implementation
graph G′(G,L) = G(V ′ ∪ N ′, A′) the arc implementation
P(a) of a(u, v) ∈ A is called:

• an arc matching iff P(a) = {p = (χ(u), χ(v))}, i.e. the
implementation is exactly one library link.

• a K-way arc segmentation iff P(a) = {p = (χ(u), n1, . . . ,
nK−1, χ(v))},∀k ∈ [1,K − 1](nk ∈ N ′), i.e. the im-
plementation is the concatenation of K library links
interleaved by k − 1 repeaters.

• a K-way arc duplication iff P(a) = {p1 = (χ(u), χ(v)), . . . ,
pK = (χ(u), χ(v))}, i.e. the implementation is made
by K library links in parallel.

Clearly, the optimum point-to-point implementation graph
can be seen as the representation of a communication ar-
chitecture that is built considering sequentially the imple-
mentation of each constraint arc a as a stand-alone task,
performed according to the following steps: (1) if it ex-
ists, the minimum cost link l in the library that satisfies
the constraints d(l) ≥ d(a) ∧ b(l) ≥ b(a); if such a link ex-
ists an arc matching is the desired arc implementation 2;
(2) if d(l) < d(a) for all library links l (while b(l) ≥ b(a) is
satisfied by some l), then arc segmentation will lead to an
implementation; (3) conversely, if b(l) < b(a) for all library
links l (while d(l) ≥ d(a) for some l), then arc duplication
will lead to an implementation; (4) in case both constraints
can not be satisfied by any link in the library, then a combi-
nation of arc segmentation and arc duplication will lead to
an implementation.

Lemma 2.1. For all constraint graphs G = G(V,A) and
all communication libraries L = L ∪ N , there exists an
optimum point-to-point implementation graph G′(G,L) =
G(V ′ ∪N ′, A′) and C(G′) =

∑
n′∈N′ c(n

′) +
∑

a′∈A′ c(a
′) =∑

a∈A C(P(a)).

On the other hand, by analyzing the definition of imple-
mentation graph it is clear that some of its arc implemen-
tations may share paths (i.e. links and/or communication
vertices). In fact, in general the cost of an implementation

2
See also the assumption 2.1 defined below.



graph is smaller than the sum of the costs of its arc imple-
mentations, i.e., re-considering equation 1, we have:

C(G′) =
∑

n′∈N′

c(n′) +
∑

a′∈A′

c(a′) ≤
∑
a∈A

C(P(a)) (2)

As a consequence, we are forced to analyze the interac-
tions between point-to-point constraint arc implementations
and the task of finding the optimum implementation graph
becomes more challenging.

Definition 2.8. Given a constraint graph G = G(V,A) a
communication library L = L ∪ N , and an implementation
graph G′(G,L) = G(V ′ ∪ N ′, A′), the union of K ∈ [2, |A|]
arc implementations P(a1), . . . ,P(aK) is called a K-way arc

merging when ∃q? s.t.
⋂K

k=1 P(ak) = q?. The path q?, whose
bandwidth b(q?) ≥ max(k=1,...,K){b(ak)} is called the com-
mon path of the merging transformation.

After considering the possibility of K-way mergings, it be-
comes natural to define a constrained optimization problem
aimed to find that implementation graph whose cost (ex-
pressed as the sum of the cost of all its components mapped
to a library element) is minimum.

Problem 2.1. Given a constraint graph G = G(V,A) and
a communication library L = L∪N , minimize the cost C(G′)
over all implementation graphs G′(G,L) = (V ′ ∪N ′, A′).

Clearly, this problem can be seen as a special case of 0-1 inte-
ger linear programming (ILP). In the sequel, we will present
an exact algorithm to find the solution of this constrained
optimization problem when the following assumption holds:

Assumption 2.1. Given a constraint graph G = G(V,A)
and a communication library L = L∪N , for each constraint
arc a = (u, v), C(P(a)) > 0 and for all pairs of arcs a =
(u, v), a′ = (u′, v′) ∈ A and for all corresponding minimum-
cost constraint arc implementations P(a),P(a′):

((d(a) ≤ d(a′)∧b(a) ≤ b(a′)) ⇔ (C(P(a)) ≤ C(P(a′))) (3)

This assumption is justified from a practical point in most
application domains: for instance an optical fiber support-
ing a given bandwidth is priced per meter; similarly, for
radio link covering a fixed distance the higher is the desired
bandwidth the more expensive is the cost of the equipment.

3. THE ALGORITHM
To solve exactly the constrained optimization problem de-

fined in the previous section we developed an algorithm that
is based on a sequence of two steps, namely local solution
generation and global solution derivation: (1) We efficiently
generate the set S of all those alternative distinct imple-
mentations of each arc in the constraint graph that are not
“dominated” by other less expensive implementations. The
set S includes all |A| arc implementations in the optimum
point-to-point implementation graph (see definition 2.6) to-
gether with a minimal set of arcs implementations that are
built applying k-way arc mergings (k ∈ [2, |A|]) (possibly
combined with some arc segmentation/duplication). The
elements of S are said “local” since they generally provide
an implementation only for a subset of the constraint arcs,
and, in the case of (k = |A|)-way mergings (where all arcs
are implemented), the implementation may only represent
a “local minimum” that is encountered while searching the

GenerateCandidateArcImplementations (G,L)
{Compute set S of candidate arc implementations}
S ⇐ ∅
{Get optimum point-to-point arc implementations}
for all arc a ∈ G do
P(a) ⇐ findBestPointToPointImplementation (a,L)
S ⇐ S ∪ σ(P(a))

end for
{Find non-dominated candidate k-way mergings}
B ⇐ ComputeBandwidthVector (G)
Γ ⇐ ComputeConstrainedDistanceSumMatrix (G)
∆ ⇐ ComputeMergingDistanceSumMatrix (G)
k ⇐ 1
foundCanditateMapping ⇐ T RUE
while (foundCanditateMapping) do

for all column j ∈ col(Γ) do
kW ayMergingNotF ound ⇐ T RUE
for all row subsets I = {i1, . . . , ik} ⊆ row(Γ) do

if (
∑k

i=1 ∆[i, j] <
∑k

i=1 Γ[i, j]) then

bmin ⇐ min
{

B[j], mini∈[1,k]{B[i]}
}

if (∃l ∈ Ls.t.(b(l) + bmin) <
∑k

i=1 B[i] + B[j]) then

S ⇐ S ∪ findKMergingImplementation(j, I)
kW ayMergingNotF ound ⇐ F ALSE

end if
end if

end for
if (kW ayMergingNotF ound) then

col(Γ) ⇐ col(Γ) \ {j}
end if

end for
if col(Γ) = ∅ then

foundCanditateMapping ⇐ F ALSE
else

k ⇐ k + 1
end if

end while

Figure 2: Deriving candidate arc implementations.

whole solution space. (2) After computing the cost of each
element of S, we solve an instance of the weighted Unate
Covering Problem(UCP) to find that subset of S providing
the minimum cost global implementation for all arcs of the
constraint graph.

When combined, the two steps correspond to implicitly
considering all possible communication sub-architectures that
can be generated by putting together communication library
components while satisfying the constraint graph require-
ments. To be effective, this approach must rely on the abil-
ity of generating the smallest possible set of local solutions
S that must necessarily be considered to guarantee that the
entire solution space is explored as part of the exact search of
the global optimum. One could naively think to generate all
possible solutions and leave the responsibility of finding the
global optimum to state-of-the-art UCP solvers [4, 8], which
provide sophisticated techniques to prune away suboptimal
local solutions. In practice, this would turn out to be quite
expensive from a computational point-of-view during both
steps. Instead, we present a set of theoretical results that
guide us during the first step, thus enabling the pruning of
many useless branches during the search of the tightest S.
Since, the proliferation of alternative arc implementations
(on top of those of the optimum point-to-point implemen-
tation graph) is due to the possibility of realizing K-way
arc mergings, it is natural to focus on defining criteria that
establish when a subset of K arcs should not be merged.

Definition 3.1. Let G = G(V,A) be a constraint graph
and L = L∪N a communication library. Also ∀k ∈ [2, |A|−
1], let Ak denote a subset of A with cardinality |Ak| = k
and V k the vertices connected by the arcs of Ak. Let Gk =
G(V k, Ak) be the projection of G onto Ak. Ak is said to be
k-way mergeable iff the union of the arc implementations
of the minimum-cost implementation graph G?(Gk,L) is a
k-way merging. The set of sets of k-way mergeable arcs is
denoted as Mk.



The following lemma provides a sufficient condition to de-
tect when a pair of arcs is not 2-way mergeable 3. As for
all the remaining results in this section, this condition is
valid independently from the characteristics of the chosen
communication library L = L ∪ N , as long as the library
satisfies Assumption 2.1.

Lemma 3.1. Given a constraint graph G = G(V,A), let
A2 = {a, a′} ⊆ A, with a = (u, v), a′ = (u′, v′). If d(a) +
d(a′) ≤ ||p(u)− p(u′)||+ ||p(v)− p(v′)|| then A2 6∈ M2

The following lemma can be seen as an extension of the
result of the previous lemma to the case of k arcs because
it provides a sufficient condition that guarantees that they
are not k-way mergeable.

Lemma 3.2. Let Ak = {a1, . . . , ak} ⊆ A be a subset of k
arcs a1 = (u1, v1), . . . , ak = (uk, vk) of G = G(V,A). If(k − 1) · d(ak) +

k−1∑
i=1

d(ai)

 ≤
k−1∑
i=1

||p(ui) − p(uk)|| + ||p(vi) − p(vk)||

then Ak 6∈ Mk

The following theorem guarantees that if an arc a can not
be part of any k-way merging then it also can not be part
of any (k + h)-way mergings with h ∈ [k + 1, |A|].

Theorem 3.1. Let G = G(V,A) be a constraint graph.
For all arc a ∈ A, if ∀k ∈ [2, |A| − 2],∀Ak−1 ⊂ A \ {a},(
Ak−1 ∪ {a} 6∈ Mk

)
, then ∀h ∈ [k, |A| − 1],∀Ah ⊂ A \ {a},(

Ah ∪ {a} 6∈ Mh+1
)
.

Given a constraint graph G = G(V,A) and a communi-
cation library L = L ∪ N , the following result provides a
sufficient condition to establish that a subset Ak of A is not
k-way mergeable, i.e., formally, that Ak 6∈ Mk.

Theorem 3.2. Let Ak = {a1, . . . , ak} ⊆ A be a subset of
k arcs a1 = (u1, v1), . . . , ak = (uk, vk) of a constraint graph
G = G(V,A) and L = L ∪ N be a communication library.
Then,{

k∑
i=1

b(ui, vi) ≥
(

max
l∈L

{b(l)}+ min
j∈[1,k]

{b(uj , vj)}
)}

⇒ Ak 6∈ Mk

Figure 2 illustrates the algorithm to generate a minimal
set of candidate arc implementations that is based on the
above results. First, it is convenient to define two dis-
tinct symmetric matrices (the Constrained Distance Sum
Matrix Γ and the Merging Distance Sum Matrix ∆) to cap-
ture key quantities related to each pair of arcs in the con-
straint graph G = G(V,A). In particular, for any two arcs
ai = (ui, vi), aj = (uj , vj), Γ(ai, aj) = d(ai) + d(aj) and
∆(ai, aj) = ||p(u) − p(u′)|| + ||p(v) − p(v′)||. Notice that
since the two matrices are symmetric, we only need to scan
the values of their upper diagonal part.

After having saved into S the optimum point-to-point arc
implementation associated to each constraint arc, the algo-
rithm proceeds by subsequently considering all possible k-
way mergings for incrementing value of k. Using the result
of Theorem 3.1, as soon as no k-way mergings are possible
for an arc aj , the corresponding column (and row) is re-
moved from the matrix Γ. The algorithm leaves the main

3
The theorem proofs can be found in [10].

a1 a2 a3 a4 a5 a6 a7 a8
a1 10.38 14.05 102.02 105.18 103.61 8.60 8.60
a2 14.44 102.40 105.56 104.00 8.99 8.99
a3 106.07 109.23 107.67 12.66 12.66
a4 197.20 195.63 100.62 100.62
a5 198.79 103.78 103.78
a6 102.22 102.22
a7 7.21
a8

Table 1: Γ(ai, aj) = d(ai) + d(aj).

a1 a2 a3 a4 a5 a6 a7 a8
a1 9.05 14.05 102.02 97.02 102.40 200.09 200.17
a2 5 103.61 98.61 104.00 201.69 201.58
a3 98.61 103.61 107.67 198.61 198.42
a4 5 9.05 100.00 100.63
a5 5.38 103.07 103.78
a6 101.40 102.22
a7 7.21
a8

Table 2: ∆(ai, aj) = ||p(u)− p(u′)||+ ||p(v)− p(v′)||.

loop, when the set of columns of Γ becomes empty. The algo-
rithm terminates returning the set S of candidate arc imple-
mentations, whose exact structures (i.e the exact topology,
communication node position, number of links,. . . ) are later
obtained solving a simple nonlinear optimization problem,
which computes also their costs. Finally, a unate covering
matrix is built by associating to each row a constraint arc,
to each column a candidate implementation and setting each
entry i, j to 1 if the implementation j implements the arc
i, to 0 otherwise. Each columns has also a weight corre-
sponding to the implementation cost. The selection of the
optimum global solution corresponds to the solution of this
instance of weighted Unate Covering Problem (UCP) and
can be found by using state-of-the-art UCP solvers [4, 8].

4. DOMAIN APPLICATION EXAMPLES
The algorithm presented in the previous section is illus-

trated here by means of two examples that are taken from
different application fields. The first example represents
a simple wide-area network (WAN), while the second ex-
ample shows how the current approach can be adapted to
attack the on-chip communication synthesis problem, Fig-
ure 3-(a) reports the diagram of a wide-area communica-
tion network, where the length of the arcs suggests that
the“computational” nodes A,B,C are fairly close to each
other as well as nodes D and E, while the two groups are
separated by a distance which is relatively much larger. We
assume that every channel presents the same bandwidth re-
quirement, namely 10Mbps. Figure 3-(b) shows the cor-
responding communication constraint graph where only the
ports and the channels are retained. In this case, it is reason-
able to adopt the approximation that all the ports of a com-
putation node have the same position. The library that is
available for implementing the communication architecture
consists of two types of links, whose cost is a function of the
supported channel length: a radio link lr = (11Mbps, l, $2×
meter), and an optical link lo = (1Gbps, l, $4×meter). Ta-
ble 1 and Table 2 report respectively the values of the Con-
strained Distance Sum Matrix Γ and the Merging Distance
Sum Matrix ∆ expressed in kilometers. By running the al-
gorithm reported in Figure 2, it is easy to determine that arc
a8 is not mergeable with any other arc and, therefore, will
have to be implemented as a minimum-cost point-to-point
link. Due to its distance, this links turns out to be the radio
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link. The algorithm also determines that arc a7 cannot be
involved in any 4-way arc merging (nor, therefore, in any
k-way mergings with k > 4). Besides the 8 optimum-cost
point-to-point implementations, the set S contains thirteen
2-way, twenty-one 3-way, sixteen 4-way, and five 5-way can-
didate arc mergings. For each candidate implementation the
following minimization problem is solved to derive its cost
as well as the position of its communication nodes. imple-
mentation: minimize the cost C(x) subject to K ·x = d. The
K matrix is derived by writing the equation forcing that the
sum of the lengths along x and y axes must be equal to the
difference in position between source and destination points.
Finally, after solving the weighted UCP, we learn that the
minimum cost solution is obtained by merging the arcs a4

with a5 and a6 in an optical link and implementing each
of the other arcs with a dedicated radio link. The result is
shown in Figure 4 where the dash-dot lines indicate a radio
link and the solid line indicates an optical link.

If we change the application domain by moving to the
problem of deriving an architecture for an on-chip commu-
nication network, the characteristics of the constraints and
the cost function are quite different. Still the proposed ap-
proach can be used to find for instance the minimum number
of repeaters (stateless buffers) that it is necessary to insert
on a metal line while performing an optimum segmentation
using the notion of critical length (lcrit) as defined in [11].
For this application, a first-cut library L can be considered
as composed by only one link (a metal wire of length lcrit

that is only dependent on the technology process) and three
communication nodes (an inverter, a multiplexer and a de-
multiplexer, all optimally sized). By using the Manhattan
distance as the appropriate measure for the length of the
links, the cost of each arc in the implementation graph is
given by b(|xv − xu| + |yv − yu|)/lcritc. Figure 5-(a) illus-
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Figure 5: Final Implementation (Ex. 2).

trates an example of this application, where we have stud-
ied the most critical channels on a multi-processor MPEG 4
decoder implemented in a 0.18µ technology. The final com-
munication architecture, reported in Figure 5-(b), has a to-
tal number of 55 required repeaters (with lcrit = 0.6mm).
It is important to notice that this result is valid as long
as the assumption that all links on the chip have a delay
smaller than the clock period. Naturally, with the advent
of deep sub-micron (DSM) process technology (0.13µ and
below), this will be true for fewer wires. Still the approach
presented in this work can be combined with the recently
proposed latency-insensitive methodology [1], after making
sure to define a cost function centered on the minimization
of both stateless (buffers) and stateful (latches) repeaters.

5. CONCLUSIONS
We introduced a novel algorithm for the automatic synthe-

sis of a communication architecture among a set of computa-
tional blocks once their relative positions and required pair-
wise communication bandwidth is provided. The algorithm
is the result of a new way of modeling the problem (embod-
ied by the notion of communication constraint graph) and
it is based on a series of theoretical results that give simple
conditions to detect when a possible merging between point-
to-point communication channels should be avoided because
it is guaranteed to be part of a suboptimal solution.

6. REFERENCES
[1] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L.

Sangiovanni-Vincentelli. A Methodology for ”Correct-by-Construction”
Latency Insensitive Design. In Proc. Intl. Conf. on Computer-Aided Design,
pages 309–315. IEEE, Nov. 1999.

[2] C. Chang, P. Kermani, and A. Kershenbaum. Multi-link-speed network
topology design. In International Phoenix Conference on Computers and
Communications, pages 299–306, 1992.

[3] J. Daveau, T. B. Ismail, and A. Jerraya. Synthesis of system level
communication by an allocation based approach. In International Symposium
on System Synthesis, pages 150–155, 1995.

[4] E. I. Goldberg, L. P. Carloni, T. Villa, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Negative Thinking in Branch-and-Bound: the
Case of Unate Covering. IEEE Transactions on Computer-Aided Design,
19(3):281–294, Mar. 2000.

[5] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: Orthogonolization of
concerns and platform-based design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19(12), December 2000.

[6] P. V. Knudsen and J. Madsen. Integrating Communication Protocol
Selection with Hardware/Software Codesign. IEEE Transactions on
Computer-Aided Design, 18(8):1077–1095, Aug. 1999.

[7] K. Lahiri, A. Raghunathan, and S. Dey. Efficient exploration of the soc
communication architecture design space. In Proc. Intl. Conf. on
Computer-Aided Design, pages 424–430, 2000.

[8] S. Liao and S. Devadas. Solving covering problems using LPR-based lower
bounds. In Proc. of the Design Automation Conf., June 1997.

[9] L.-S. Peh and W. J. Dally. Flit reservation flow control. In International
Symposium on High-Performance Computer Architecture, pages 74–84, 1999.

[10] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli.
Constraint-Driven Communication Synthesis. Technical Report available
at www-cad.eecs.berkeley.edu/̃lcarloni, Apr. 2002.

[11] R. H. J. M. Otten and R. K. Brayton. Planning for Performance. In Proc.
of the Design Automation Conf., pages 122–127, June 1998.


