
Special Issue Article

CSL4P: A Contract Specification Language
for Platforms
Alessandro Pinto 1,∗ and Alberto L. Sangiovanni Vincentelli2

1United Technologies Research Center, 2855 Telegreaph Avenue, Suite 410, Berkeley, CA 94705
2Electrical Engineering and Computer Sciences, University of California, Berkeley, CA

Received 22 October 2014; Revised 28 June 2016; Accepted 2 April 2017, after one or more revisions
Published online in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/sys.21386

ABSTRACT

The contract-based design formalism supports compositional design and verification, and generalizes
many other languages where components are defined in terms of their assumptions and guarantees.
Most languages and tools for contract-based design provide constructs to define, instantiate, and connect
contracts, but fall short in capturing families of potential architectures in a flexible way. This article presents
a Contract-Based Specification Language for Platforms (CSL4P). A platform comprises a set of contract types and a
set of constraints called rules. Contract types can be instantiated and connected to formplatform instances.
While themeaning of composition is predefined inmost languages, composition rules are used in CSL4P to
provide a finer control on the semantics of interconnections. In addition, the separation of contract types
from rules allows users of CSL4P to define different platforms out of the same set of components. This
article describes syntax and semantics of the language, a development environment, which includes a
compiler and a verification back-end, and an application example. C⃝ 2017 Wiley Periodicals, Inc. Syst Eng
20: 220–234, 2017

Key words: Platform-Based; Contract-Based; System Design; Formal Methods

1. MOTIVATION, BACKGROUND, AND
CONTRIBUTIONS

A design process defines a sequence of design, validation and
verification activities, as well as guidelines, rules and best
practices to help avoiding common pitfalls that may turn into
serious design errors. Design processes become essential in
large systems not only to manage complexity arising from the
large number of components, but most importantly to manage
their interactions through controlled interfaces. This is crucial

∗Author to whom all correspondence should be addressed (e-mail:
pintoa@utrc.utc.com).

Systems Engineering Vol. 20, No. 3, 2017
C⃝ 2017 Wiley Periodicals, Inc.

because components and subsystems may span across various
disciplines, groups, and organizations.
For the past four decades, system engineering processes

have been the subject of standardization efforts. The first
military standard, the MIL-STD-499, appeared in 1969 and
was revised in [1974]. The MIL-STD-499B [1993] is the
most recent version that outlines a total system approach for
the development of defense systems. Industry standards such
as ANSI/GEIA 632 [2003] and ISO/IEC 15288 [2003] have
also been adopted for product development. These standards
define processes and tasks to be performed during the entire
product life-cycle, including the design phase.
In all these standards, the suggested design process follows

the V-model [1998] that embodies a water-fall approach to
design. This approach is not effective when dealing with

220

http://orcid.org/0000-0001-8308-311X

CSL4P: A CONTRACT SPECIFICATION LANGUAGE FOR PLATFORMS 221

large and/or complex systems yielding long re-design cycles
that delay the final version of the system as well as increase
development costs. Indeed, for software intensive systems, it
has been already reported [2002] that the V-model leads to
problems as the majority of design errors are introduced in
the early stages of the design process but only discovered
late, during integration and testing. To reduce the chances
that these types of problems occur, decisions made in the
early stages should be well-informed and early verification
should be favored. One way to achieve this goal is through
the use of models at higher levels of abstraction that capture
properties such as performance and cost, as well as interfaces.
These models can be used to check system-level properties or
to explore alternative architectural solutions for the same set
of requirements. If model fidelity is appropriate, the results
obtained from these high level analyses will remain valid once
the actual components are integrated, avoiding the long re-
design cycles we mentioned above. However, this approach
requires a virtual engineering environment populated with
validated models. The development and validation of models
is an additional effort but it can be done once and amortized
over the design of many products. A virtual engineering en-
vironment helps designers to manage models, run analysis
and optimization tools and find potential sources of problems.
A formal language for describing components and rules that
must be followed to integrate them into systems is at the
core of such computer-assisted design process. The use of a
language with formal semantics is also key to enabling inter-
operability of tools.
The guiding principles for the definition of the Contract-

Based Specification Language For Platforms (CSL4P) come
from several observations. For example, widely distributed
systems such as swarm systems1 must be designed in a hi-
erarchical and compositional way and languages that support
these design styles are essential parts of the arsenal of the
design tools. Further, the design of complex cyber-electro-
mechanical systems requires mixing skills and expertise com-
ing from different people who contribute to the same design
artifact. Thus, to be effective in serving the needs of system
designers, a formal language must satisfy at least the follow-
ing important requirements:

R1 It must support multiple abstraction levels to assist de-
signers from specification to prototyping and testing.
Each refinement step from one level of abstraction to the
next adds details to the design. Models of compo-
nents at one abstraction level are in formal refinement/
abstraction relationship with models of components at
the previous/next abstraction level. These relationships
guarantee traceability in the design process.

R2 It must support multiple viewpoints to fuse together dif-
ferent aspects of components and systems, or different
requirements. Viewpoints can be used to model aspects
that belong to different disciplines (e.g., mechanical,
controls, electrical) and that are yet related to each other.
Viewpoints can also be used to bring together different
models such as static and dynamic functional models,
and nonfunctional ones such as cost and performance.

R3 It must support “compositional” design and verification.
A compositional design process helps partitioning the

design effort across its sub-systems or components (top-
down). A compositional verification process enabled
the verification of system-level properties from compo-
nent properties (bottom-up).

R4 It must provide ways to embrace legacy systems. The
design of complex systems, such as aircraft, often de-
rives from previous designs that are known toworkwell.
Thus, components are often re-used from one design to
the next. Moreover these components are not necessar-
ily formally specified.

R5 It must allow defining and studying product families
rather than specific products. Gaining market share re-
quires covering the needs of a wide range of customers.
Thus, it makes sense to design a product line rather than
a single product. This is the case, for example, of con-
sumer electronics (e.g., the family of Apple computers).

R6 The language should be user-friendly to support de-
signers within their application domain. At the same
time it should be generic enough to support several such
domains.

These requirements justify our choice of a language based
on two important design paradigms: contract-based design
(CBD) [Giese, 2000; Benveniste et al., 2008; Sangiovanni-
Vincentelli et al., 2012; Benveniste et al., 2012] (R1-R4)
and platform-based design (PBD) [Sangiovanni-Vincentelli,
2003, 2007; Pinto et al., 2004] (R1, R2, R5). Both paradigms
will be reviewed in this article and their features will be linked
to the requirements stated above. Requirement R6 is ad-
dressed by the concrete syntax and features of the CSL4P lan-
guage such as the ability to package elements into modules,
the use of inheritance, and tool support for editing models.
These features distinguish CSL4P frommany other languages
that could be used for the same purpose. From the expressive-
ness and ease of use standpoint, modeling in CSL4P rather
than in a generic logic-based language is analogous to pro-
gramming in Java rather than assembly.

1.1. Background

1.2. Platform-Based Design

In PBD, at each step, top-down refinements of high-level
specifications are mapped onto bottom-up abstractions and
characterizations of potential implementations. Each abstrac-
tion layer is defined by a design platform, which is the set
of all architectures that can be built out of a library (collec-
tion) of components according to composition rules. In the
top-down phase of each design step, we formalize the high-
level system requirements and we perform an optimization
(refinement) phase called mapping, where the requirements
are mapped onto the available implementation library com-
ponents and their composition. Mapping is cast as an opti-
mization problem, where a set of performance metrics and
quality factors are optimized over a space constrained by both
system requirements and component feasibility constraints.
Mapping is the mechanism to move from a level of abstrac-
tion to a lower one using the available components in the
library. Note that when some constraint cannot be satisfied
using the available library components or the mapping result

Systems Engineering DOI 10.1002/sys

222 PINTO AND SANGIOVANNI VINCENTELLI

is not satisfactory for the designer, additional elements can
be designed and inserted in the library. For example, when
implementing an algorithm with code running on a proces-
sor, we are assigning the functionality of the algorithm to a
processor and the code is the result of mapping the “equa-
tions” describing the algorithm into the instruction set of the
processor. If the processor is too slow, then real-time con-
straints may be violated. In this case, a new processor has
to be found or designed that executes the code fast enough
to satisfy the real-time constraint. In the mapping phase, we
consider different viewpoints (aspects, concerns) of the sys-
tem (e.g., functional, reliability, safety, timing) and of the
components. In the bottom-up phase, we build and model the
component library (including both plant and controller).
If the design process is carried out as a sequence of refine-

ment steps from the most abstract representation of the design
platform (top-level requirements) to its most concrete repre-
sentation (physical implementation), providing guarantees on
the correctness of each step becomes essential.
To do so, we need to formally prove that: (i) a set of require-

ments are consistent, that is, there exists an implementation
satisfying all of them; (ii) an aggregation of components are
compatible, that is, there exists an environment in which they
can correctly operate; (iii) an aggregation of components re-
fines a specification, that is, it implements the specification
and is able to operate in any environment admitted by it.
Moreover, whenever possible, we require the above proofs
to be performed automatically and efficiently, to tackle the
complexity of today’s CPS. Therefore, to formalize the above
design concepts, and enable the realization of system archi-
tectures and control algorithms in a hierarchical and compo-
sitional manner that satisfies the constraints and optimize the
cost function(s), we resort to contracts.

1.3. Contracts

The idea of using formal descriptions of interfaces to prove
the correctness of programs has been studied for the past
40 years. Among the earliest works, we mention the ones
from Floyd [Floyd, 1967] and Hoare [Hoare, 1969], as well
as an interesting essay from Dijkstra [Dijkstra, 1976]. An
extensive review of previous work and approaches can be
found in [Tripakis et al., 2011]. Contracts are a generalization
of these ideas to system design. In a contract framework,
design and verification complexity is reduced by decompos-
ing system-level tasks into more manageable sub-problems
at the component level, under a set of assumptions. System
properties can then be inferred or proved based on component
properties. Rigorous contract theories have been developed
over the years, including assume-guarantee (A/G) contracts
[Benveniste et al., 2008] and interface theories [de Alfaro
and Henzinger, 2001]. However, their adoption in industry is
limited. A major challenge is the absence of a comprehen-
sive modeling formalism for CPS that addresses complex-
ity and heterogeneity Sangiovanni-Vincentelli, Damm, and
Passerone 2012; Benveniste et al. 2012.
Contracts can be used in the PBD framework to prove

that the refinement steps are correct as outlined above. In
particular, contracts have been used traditionally to specify

components, and aggregation of components at the same level
of abstraction; for this reason we refer to them as horizontal
contracts. Horizontal contracts can be used to prove that an
aggregation of components are compatible, that is, there exists
an environment in which they can correctly operate.
We use contracts also to formalize and reason about re-

finement between two different abstraction levels in the PBD
process [Nuzzo et al., 2012; Benveniste et al., 2012]; for this
reason, we refer to this type of contracts as vertical contracts.
Vertical contracts can be used to prove that : a set of require-
ments are consistent, that is, there exists an implementation
satisfying all of them and an aggregation of components re-
fines a specification, that is, it implements the specification
and is able to operate in any environment admitted by it.
Hence the combination of vertical and horizontal contracts
is an important support to formalize the PBD design flow.

1.4. Existing Frameworks

We define an architecture loosely as the interconnection of a
certain number of components. Based on this definition, most
languages used today in the design of systems are suitable
to define architectures. They can be divided into categories
based on the types of design tools they primarily enable.
Some languages focus mainly on enabling simulation while
others are geared toward performance modeling, analysis and
verification—design activities that are all essential to a design
process for complex systems.
The basic syntax of most of these languages allows cap-

turing hierarchy, components, ports and connections. For ex-
ample, Simulink2 provides concepts such as blocks, ports,
and signals to connect ports; a group of components can be
encapsulated into a sub-system, thereby making Simulink
models hierarchical. SystemC also provides concepts like
modules—which can be nested hierachically—, ports, and
channels. The VHDL [IEEE, 2000] language provides very
similar constructs. SysML 3 defines the notion of blocks, ports
and connectors; the internal block diagram of SysML is a
graphical representation of an architecture. A unified abstract
syntax of these types of languages can be found in [Brooks
et al., 2008] which also defines the abstract syntax of Ptolemy
II. The features provided by these tools simplify system mod-
eling and should be implemented by CSL4P (Requirement
R6).
The Architecture Analysis and Design Language (AADL)

2012] provides features to model hardware and software as
well as performance metrics (such as the execution rate of a
software task). The AADL language also supports the defini-
tion of product families [Feiler, 2007], although families are
meant to represent few variants of the same product and not
really platforms as defined later in this article. Similarly, the
SysML language can be used to model properties of blocks
such as performance numbers, although the language per se
does not provide a definitive semantics for those properties.
An interesting feature of SysML is the ability to constrain the
way a component is used by adding OCL4 constraints to a
model.
Logic-based languages provide some features to model

families of architectures. These languages support the

Systems Engineering DOI 10.1002/sys

CSL4P: A CONTRACT SPECIFICATION LANGUAGE FOR PLATFORMS 223

specification of components in First-Order Logic. Architec-
tures can be formally verified by solving a validity problem
in such logic. FORMULA [Jackson et al., 2010] and Al-
loy [Jackson, 2006] are examples of these languages. Their
approach is similar in spirit to the one presented in this
article: a model is translated into a logic formula for which
an off-the shelf decision procedure exists (Satisfiability Mod-
ulo Theories for FORMULA, and SAT for Alloy). In par-
ticular, the FORMULA language follows the platform-based
design paradigm by providing all the necessary features to
model platforms, namely components and rules that define
legal compositions. An interesting approach is the one imple-
mented in the PACELAB tool suite 5 where a component is
modeled as a set of constraints on variables (some defined
as inputs and some as outputs). Thus, a system becomes
a network of constraints between variables. A proprietary
solver is used to find a consistent value assignment for all
variables in the system, if one exists. PACELAB implements
a hybrid approach: components are architectures are defined
using constraints as in the case of logic-based languages,
but constraints are defined in imperative code. The Rosetta
[Alexander, 2006] language follows an approach very similar
to CSL4P, but the language is not supported by tools for mod-
eling and verification. The modeling style for components
and connection used by CSL4P also resembles the Modelica
[Fritzson, 2003] language. Interestingly, previous work has
investigatedmodeling systems properties inModelica [Jardin,
2011]. These properties can then be checked in simulation or
by formal methods. CSL4P extends the notion of property
to contracts, provides a declarative specification language,
and uses formal methods rather than simulation. As result,
CSL4P addressed the limitations expressed by the authors of
[Jardin, 2011].
The intent of this section is not to provide a comprehensive

list of all the availablemodeling languages and tools that are at
the disposal of a system engineer. It provides, however, a list
of representative environments for different classes of mod-
eling approaches. In designing complex systems, engineers
make use of several tools to perform simulations, analysis and
early validation and verification. Models used by these tools
are often different and consistency is maintained manually.
Further, the design process is divided into subsequent phases
at different levels of abstraction such as requirement defi-
nition, preliminary system design and detailed design. Each
phase uses different models, and even in this case, consistency
is maintained manually. The use of CBD and PBD helps in
organizing the design process, enabling compositional ver-
ification and design-by-refinement, and linking models by
formal relations that can be automatically checked. Thus, a
language that supports both paradigms is a key enabler for
the design of complex systems.
The need for a new language stems from the following con-

siderations. Languages available today follow either the PBD
or the CBD paradigms. Most of the work in the definition of
a language for CBD has been theoretical with limited imple-
mentation which can be used to prove strength and weakness
of the approach. The most relevant implementation is the con-
tract specification language developed under the Speculative
and Exploratory Design in Systems Engineering (SPEEDS)
project 6. Moreover, the focus of most available languages

has been on capturing architecture instances by instantiating
and composing components from a library, which is a reposi-
tory of models. Unfortunately, this is not sufficient to capture
product families or platforms, that is, special libraries where
in addition to components, a set of rules contribute to the def-
inition of admissible architectural solutions. The set of rules
come from several stake-holders in the design process such as
customers, system architects, and sub-system suppliers. They
are, therefore, an essential element in the design of complex
systems. A path to develop a language that supports both CBD
and PBD could be to reuse an expressive language such as
Alloy or FORMULA and enforce a certain modeling style to
encode contracts and composition rules. However, this choice
would lead to a modeling burden since the notion of contract
is not natively supported. Thus, this approach would not be
able to satisfy our requirement R6.
It would be challenging to develop a new language that is

a superset of all the languages mentioned in this short section
while adding support for CBD and PBD. The first step is to
be able to capture structural properties (i.e., components and
their connections), nonfunctional properties such as perfor-
mance and cost, and state invariants (i.e., characterization of
sets where the trajectories of a system lie). This is the area
that CSL4P enhances with respect to the frameworks listed in
this section.

1.5. Contributions

In this paper, we present a contract specification language for
platforms called CSL4P. This language belongs to the class of
logic-based languages. It follows the platform-based design
paradigm as well as the contract-based design paradigm that
are effective in a component-based and design-by-refinement
development process.
A platform is defined by a set of contract types and a set of

composition (or design) rules. Contract types can be instan-
tiated and connected to form a platform instance (or archi-
tecture). The instance of a contract type is also referred to as
contract instance. A contract type specifies the environments
in which an actual component implementing the contract can
be used and its resulting behaviors. It can be thought of as
a “data sheet” that describes a component available from
a certain vendor. The component is an actual part used in
a system and it can be thought of as the artifact produced
by the vendor—who has also validated the component and
certified that it adheres to the data sheet. Rules define when
a composition of contract instances is legal. CSL4P supports
two different classes of rules.Validity rules are used to express
those requirements that are implicit in a specific application
domain and that all architectures must satisfy. For example,
control units shall never be placed close to a heat source.
Validity rules are also used to express system implementation
constraints such as the minimum radius of curvature of a pipe.
Assertion rules are used to model constraints that always hold
such as the laws of physics. Assertion rules are true statements
in all cases while validity rules can be violated, indicating
that the architecture does not belong to the platform.We show
that an extension of First-Order Logic is necessary to model
aggregate quantities often used in the specification of systems

Systems Engineering DOI 10.1002/sys

224 PINTO AND SANGIOVANNI VINCENTELLI

such as the total heat entering a system. We define the syntax
and semantics of such rules. Finally, we present a develop-
ment environment for CSL4P. The development environment
includes an editor, a compiler and an SMT solver to check the
validity of architectures.
In this article we only consider static models, that is, mod-

els that do not use the notion of time (either discrete or con-
tinuous). This extension is left for future work and requires
a different mechanism to define composition. The verifica-
tion of architectures is supported by Satisfiability Modulo
Theories solvers. These solvers are becoming capable of an-
swering satisfiability queries on problems that may contain
nonlinearities [Jovanovi and de Moura, 2012; Nuzzo et al.,
2010; Frnzle et al., 2007; Gao, Kong, and Clarke, 2013], and
differential equations [Eggers et al., 2011]. Thus, we expect to
be able to increase the expressiveness of CSL4P in the future
by introducing the notion of discrete and continuous time.

2. DEFINITION OF THE CSL4P LANGUAGE

An abstract platform for power distribution systems is mod-
eled to explain the usage of the language and its main fea-
tures. Then, the syntax and semantics of CSL4P are formally
defined.

2.1. CSL4P at a Glance

A power distribution system consists of a set of power
sources, or generators, a set of power sinks, or loads, a set of
storage elements, buses, and “contactors” (or switches) that
are used to connect components together and transfer power
from generators to loads under different operating and de-
graded conditions. A generator is connected to a load through
a path in the power distribution system (a path that may tra-
verse several buses and contactors). In the preliminary design
phase, the topology of the power distribution system can be
hidden by abstracting paths into point-to-point connections
between power sources and power sinks. Such abstraction
could be used to determine the number of generators required
in a specific application and the distribution of loads among
them.
The abstract power distribution system platform contains

only two classes of components: generators and loads. These
classes are modeled as contract types in CSL4P, as shown
in Table I. The contract on the left of Table I is the standard
model of a nonideal generator that is the serial connection
of an ideal generator and a resistor. The generator type has
anElectrical view. Parameter R is the internal resistance
of the generator while parameter v0 is its nominal voltage.
Variable v and variable i are the voltage and current, re-
spectively. There is no distinction between input and output
variables in these models which can be considered acausal.
If needed, the direction of variables, as well as the rules
defining valid connections among them, must be modeled in
the platform. The view contains two sections that define what
the component assumes about the environment, and what it
guarantees in return. In this example, the component assumes
that the environment does not require a total power greater
than 200,0007 and guarantees that the output voltage is equal
to the nominal voltage minus the drop on its internal resistor.

The contract in the center of Table I is an abstraction
of a more complex generator component where a controller
keeps the output voltage close to the nominal one. Finally, the
contract on the right represents a constant power load. This
contract assumes that the environment provides the nominal
voltage. Under this assumption, the component guarantees to
use constant power equal to P . Notice that each contract in
this table is a type and not an instance. Instantiating a contract
corresponds to renaming its variables. These three contract
types together form a library that will be called GenLoad.
Many instances of these contracts can be created and added
to an architecture as follows:

architecture A from GenLoad {
//Component Ins tances
Generator g ;
ConstantPowerLoad l1 ;
ConstantPowerLoad l2 ;
//Parameter s e t t i n g
g.R = 1 ; g.v0 = 270 ; l1.P = 10e3 ; l1.vnom = 270 ;

l2.P = 10e3 ; l2.vnom = 270 ;
Connected(g , l1) ; Connected(g , l2) ;

Instances of contract types are created similarly to most
programming languages by using a pair consisting of the
type name and an identifier. Architecture A has three contract
instances: a generator g and two loads l1 and l2. Notice
that variables and parameters are scoped by the contract in-
stances and the dot notation is used to refer to them. Thus,
instantiating a contract type corresponds to renaming all its
variables (e.g., we have three distinct current variables in
architecture A: l1.i , l2.i and g.i). The contract instances can
be configured by setting their internal parameters. For exam-
ple, the generator has an internal resistance equal to 1 and a
nominal voltage equal to 270. To connect contract instances,
the CSL4P language provides a predicate Connected(s, d)
where s and d are contract instances. For example, generator
g is connected to loads l1 and l2. Such predicate does not
define what a connection means (in the example above, the
two connections (g, l1) and (g, l2) do not impose any relation
among the variables in each instance). Domain experts would
interpret such connections as follows: the voltage at the two
loads is equal to the voltage at the generator, and the total
current provided by the generator is the sum of the currents
required by l1 and l2. These rules try to capture facts that are
part of the domain knowledge and that automatically hold;
phenomena that are determined by “nature,” so to speak. We
call these rules assertions. The following rule defines the
relationship among the voltage at the generator and at the
loads of any platform instance:

assertion voltageValueRule {
f o ra l l g : Generator , f o ra l l l

:
Connected(g , l) ⇒ g.v = l.v ;

ConstantPowerLoad ,

An additional assertion rule can be added to the platform
to state that connections are bidirectional:

Systems Engineering DOI 10.1002/sys

CSL4P: A CONTRACT SPECIFICATION LANGUAGE FOR PLATFORMS 225

Table I. Two models of a generator contract type (left and center), and a model of a constant power load type (right)

component Generator {
view E l e c t r i c a l {
param R , v0 : r e a l ;
var v , i : r e a l ;
assume { v0 · i ≤ 200e3 } ;
guarantee { v = v0 − R · i } ;
}}

component Contro l l edGenerator {
view E l e c t r i c a l {
param v0 , e : r e a l ;
var v , i : r e a l ;
assume { v0 · i ≤ 200e3 } ;
guarantee
{ (1 − e) · v0 ≤ v ≤ (1 + e) · v0 } ;
}}

component ConstantPowerLoad {
view E l e c t r i c a l {
param P , vnom : r e a l ;
var v , i : r e a l ;
assume { v = vnom } ;
guarantee { vnom · i = P } ;
}}

assertion conne c t i on sAr eB id i r e c t i ona l {
f o ra l l g : Generator , f o ra l l l

:
(Connected(g , l) ⇒ Connected(l ,g))

∧ (Connected (l ,g)
⇒ Connected(g , l))

ConstantPowerLoad ,

Formalisms such as Bond-Graphs [Karnopp, Margolis, and
Rosenberg, 2006] incorporate these rules directly as part of
the semantics of the language. CSL4P, alike these languages,
is based on modeling with constraints, but tries to retain gen-
erality by allowing such knowledge to be defined by the user.
These rules can, however, be encapsulated into libraries that
can be reused.
A different type of rules is used to specify when architec-

tures are considered valid. For example, it is not acceptable
to have power distribution systems with unconnected genera-
tors which bring no performance benefits and only add extra
weight making products less competitive. The following rule
declares valid only those architectures with no unconnected
generators:

validity noUnconnectedGenerators {
f o ra l l g : Generator , exists l

: ConstantPowerLoad ,
Connected(g , l)

We believe that assertion and validity rules provide a flex-
ible mechanism to define the semantics of connections, ef-
fectively exposing a fine grained mechanism to define the
composition operator over contracts. This flexibility is at the
core of the expressiveness of CSL4P.

2.2. Logical Framework

In Section 2.1, we provided an informal description of the
CSL4P language. Before describing the syntax and seman-
tics of CSL4P formally, we introduce the underlying logi-
cal framework. CSL4P is based on Order-Sorted First Order
Logic (FOL) with equality. Let the signature of this logic be
Σ = ( , ⊳, F , P ,Γ, 𝜎).

 is a set of sorts or types and ⊳ ⊆  ×  , the extension
relation, is a partial order over  . F is the set of function
symbols, P is the set of predicate symbols and Γ is a set

of constant symbols. The sets  , F , P and Γ are disjoint.
The function 𝜎 ∶ {F ∪ P ∪ Γ} →  ∗ maps each function,
predicate, and constant symbol to its arity (i.e., a sequence of
types). For a predicate symbol p ∈ P , 𝜎(p) = (𝜏1,… , 𝜏n(p)),
and for a function symbols f ∈ F , 𝜎(f) = (𝜏0, 𝜏1,… , 𝜏n(f)),
where 𝜏i and 𝜎i are types, and both n(p) and n(f) are strictly
positive. For a function symbol f , we also denote 𝜎(f)[0]
with 𝜏(f) (where for a sequence 𝜏 = (𝜏1,… , 𝜏n), we have
denoted the i th element 𝜏i with 𝜏[i]). For a constant symbol c,
𝜎(c) = (𝜏) is a sequence with one element which is the type
of the constant also denoted 𝜏(c). We will use the notation
c ∶ 𝜏(c) to say that a constant c has type 𝜏(c).

We now define terms and formulas. We assume that there
exists a denumerable set of variable symbols 𝕍 and that each
variable v ∈ 𝕍 is associated with a type 𝜏(v). We will use the
notation v ∶ 𝜏(v) to say that a variable v has type 𝜏(v)

A constant term is c ∈ Γ and has type 𝜏(c). A variable terms
is v ∈ 𝕍 and has type 𝜏(v). A function term is a function
symbol f ∈ F followed by a list of terms (t1,… , tn(f))where
ti is of type 𝜏i and 𝜏i ⊳ 𝜎(f)[i], for i = 1,… , n(f). The
function term f (t1,… , tn(f)) has type 𝜏(f) = 𝜎(f)[0].
An atomic expression over Σ is a predicate symbol p fol-

lowed by a list of terms (t1,… , tn(p)) where ti is of type 𝜏i
and 𝜏i ⊳ 𝜎(p)[i], for i = 1,… , n(p). A Σ-formula is defined
as follows. All atomic expressions over Σ are Σ-formulas. Let
Φ and Ψ be two Σ-formulas and x a variable symbol, then:
¬Φ, Φ ∧ Ψ, and ∀x ∶ 𝜏(x).Φ are Σ-formulas (these are also
used to define the logical operator ∨ and the quantifier ∃ in
the usual way). We will use the term “formula” rather than
Σ-formula to make the presentation less verbose.
A Σ-interpretation 𝜇 is a map such that that: (1) each sort

𝜏 ∈  ismapped to a domain of objects D𝜏 such that if 𝜏1 ⊳ 𝜏2
then D𝜏1 ⊆ D𝜏2 ; (2) each variable v ∈ 𝕍 is mapped to an
object v𝜇 ∈ D𝜏(v); (3) each constant c ∈ Γ is mapped to an
object c𝜇 ∈ D𝜏(c); (4) each function symbol f ∈ F with arity
(𝜏0, 𝜏1,… , 𝜏n(f)) is mapped to a function f 𝜇 ∶ D𝜏1 × … ×
D𝜏n(f) → D𝜏0 ; (4) each predicate symbol p ∈ P with arity
(𝜏1,… , 𝜏n(p)) is mapped to a relation p𝜇 ⊆ D𝜏1 × … × D𝜏n(p) .

Given aΣ-interpretation 𝜇, and a formula overΣ, it is possi-
ble to check whether the formula is true or false as follows. An
atomic formula p(t1,… , tn(p)) is true if (t

𝜇

1 ,… , t𝜇
n(p)) ∈ p𝜇.

Let Φ and Ψ be two formulas and x a variable symbol, then:
¬Φ is true if Φ is false, Φ ∧ Ψ is true if Φ is true and Ψ
is true, and ∀x ∶ 𝜏(x).Φ is true if Φ(x → o) is true for all
objects o ∈ D𝜏(x) (where Φ(x → o) is a formula obtained by
replacing occurrences of the bound variable x with o). Finally,
a formula is satisfiable if there exists an interpretation that

Systems Engineering DOI 10.1002/sys

226 PINTO AND SANGIOVANNI VINCENTELLI

makes the formula true, and is valid if it is true under all
interpretations (or if its negation is not satisfiable).
A Σ-theory is a pair T = (Σ, Ax) where Ax is a set

of Σ-sentences. A Σ-formula is satisfiable in a theory
T if there exists a Σ-interpretation 𝜇 that satisfies all
the sentences in Ax and that makes the formula hold
(please refer to [Tinelli and Zarba, 2004] for a de-
tailed explanation). LetΣ1 = (1, ⊳1, F1, P1,Γ1, 𝜎1) andΣ2 =
(2, ⊳2, F2, P2,Γ2, 𝜎2) be two signatures with disjoint sets
of types, function, predicate and constant symbols. Then
their unionΣ1 ∪ Σ2 = ( , ⊳, F , P ,Γ, 𝜎) is such that  = 1 ∪
2, F = F1 ∪ F2, P = P1 ∪ P2, Γ = Γ1 ∪ Γ2, 𝜎|F1∪P1∪Γ1 =
𝜎1 and 𝜎|F2∪P2∪Γ2 = 𝜎2. Given two theories T1 = (Σ1, Ax1)
and T2 = (Σ2, Ax2) over disjoint signatures, their composi-
tion is T = (Σ1 ∪ Σ2, Ax1 ∪ Ax2). For decidability results of
combination of theories, please refer to [Tinelli and Zarba,
2004]. The basic signature defined above shall be consid-
ered as the empty theory, or the theory TEUF of equality
and uninterpreted functions [Manna and Zarba, 2003]. We
will also use the theory of real numbers Tℝ with signature
({Real}, ∅, {+,−}, {≤},Γℝ, 𝜎ℝ), where the function symbols
and predicate symbols have the natural interpretation.

2.3. Abstract Syntax of CSL4P

In this section we define the syntax of platforms and plat-
form instances. We then introduce an operator to describe
constraints on aggregate quantities that are typically required
when defining rules.

Definition 1 Platform. A platform is a tuple  = (,)
where:

•  = {C1,… ,Cn} is a set of contract types (i.e., Ci ∈
). A contract type Ci = (Vi , 𝜙Ai , 𝜙

G
i) is associated with

a set of variables Vi , and two formulas over Vi , 𝜙
A
i and

𝜙Gi , called assumption and guarantee. We assume that
∀Ci ∈  and ∀C j ∈ , Ci ≠ C j ⇒ Vi ∩ Vj = ∅. For a
contract type C, we will also use the notation VC to
denote its set of variables, 𝜙AC to denote its assumption
and 𝜙GC to denote its guarantee

•  is a set of rules partitioned into a set of assertion
rulesA = {r1,… , ra}, and a set of validity rulesV =
{ra+1,… , ra+v}.Rules can have two forms: ∀c ∶ C .𝜙(c)
or ∃c ∶ C .𝜙(c) where C ∈  is a contract type and 𝜙(c)
is a formula of the same form or a quantifier free for-
mula. The rest of the variables appearing in a rule are
c.v where v ∈ V𝜏(c).

The set of types  contains a distinguished element
Contract such that, for all contract types C that might be
defined as belonging to a platform,C ⊳ Contract . Moreover,
we introduce a predicate symbol Connected ∈ P with arity
(Contract ,Contract) that is used to specify connections
among components. Contract types can be instantiated and
connected to form an architecture (or platform instance).

Definition 2 Platform Instance. A platform instance from
a platform  = (,) is a tuple I = (comp, con f , conn)
where:

• comp = {c1,… , ck} is a set of contract instances with
types 𝜏(ci).• con f = {𝜋1(VI),… , 𝜋m(VI)} is a set of quantifier free
formulas called configuration constraints, where VI =
∪c∈comp{c.v ∶ v ∈ V𝜏(c)} is the set of variables of the
platform instance.

• conn ⊆ comp × comp is a set of connections

A set of connections conn is said to be defined over the set
of contracts comp if for all (a, b) ∈ conn, both a and b belong
to comp. Relation conn is the restriction of the Connected
predicated over the domain of contracts comp.

CSL4P extends the rule language with terms that map sets
of objects of a certain type C to values To understand the rea-
sons for this language extension, consider Kirchhoff’s laws
for electric circuits and how such rules should be expressed
in the power distribution system example: The sum of the
currents absorbed by loads connected to a generator must be
equal to the current provided by the generator:

∀g ∶ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 . g.i =
∑

l∈ConnL

l.i ,

where ConnL is the set of ConstantPowerLoad contracts
connected to the generator. A set of objects is defined by a
characteristic formula r (c) over the free variable c. Intuitively,
an object c′ belongs to the set if r (c′) evaluates to true. Let
o ∈ F be a binary operator over elements of a type 𝜏 (i.e.,
𝜎(o) = (𝜏, 𝜏, 𝜏)) such that (D𝜏 , o) is a commutative monoid
with neutral element eo. Then, the following term:


c∶C|r (c)c.v ,

is an iterator that applies the binary operator o to the terms
c.v of all those objects of type C in the set defined by the
characteristic formula r (c). The term is well-defined if type
C has a variable v and if operator o is defined over 𝜏(v)—
two conditions that can be statically checked in CSL4P. To
define the precise semantics of this term, we use a standard
construction as follows. For a Σ-interpretation 𝜇, consider the
power set  = 2D𝜏 . In this expanded domain, we can inter-
pret an operator ′(X .v) as follows: ′(∅.v) is equal to eo,
and ′(({x} ∪ X).v) = o(x .v ,′(X .v)). Let X ′ be the largest
set in  such that ∀c′ ∈ X , r (c′) is true, then c∶C|r (c)c.v =
′(X ′.v).
The following example shows the concrete syntax used in

this paper:

assertion rule to ta lCur rent {
f o ra l l g : Generator ,

g . i = Sum{c : Contract | Connected(g , c) } [i]

In this composition rule, Sum is the operator  and r (c) ≡
Connected(g,c). The corresponding binary operator o is
the sum over reals. The variable selector [i] plays the role of
the variable v . The term g.i , that indicates the current of the
generator, is constrained to be equal to the sum of the currents
of all contract instances connected to it.
This kind of term is similar to the Object Constraint Lan-

guage (OCL) iterate operation over collections8.

Systems Engineering DOI 10.1002/sys

CSL4P: A CONTRACT SPECIFICATION LANGUAGE FOR PLATFORMS 227

2.4. CSL4P Semantics

Preliminaries. A formula 𝜙 defines a set of interpreta-
tions [[𝜙]] = {𝜇 ∶ 𝜇 ⊧ 𝜙}, also referred to as the models of 𝜙.
Thus, we use formulas to represent concrete components (i.e.,
sets of behaviors). Let M1 and M2 be two concrete compo-
nents and𝜙M1 and𝜙M2 be the two formulas that describe their
behaviors. Then, the behaviors of the composition M1 × M2
is the formula 𝜙M1 ∧ 𝜙M2 . This composition operator is as-
sociative and commutative. A static A/G-contract is a pair
 = (𝜙A, 𝜙G) of formulas. We will use the calligraphic font
for A/G-contracts. Models of 𝜙A are environments that an
implementation of this contract must accept. For such envi-
ronments, an implementationmust satisfy𝜙G . More formally,
a component M implements the static A/G-contract  if and
only if 𝜙A ∧ 𝜙M ⇒ 𝜙G holds. As explained in [Benveniste
et al., 2012], an implementation of  is also an implementa-
tion of ′ = (𝜙A, 𝜙G ∨ ¬𝜙A) which is said to be saturated, or
in canonical form.
A saturated static A/G-contract  = (𝜙A, 𝜙G) is compati-

ble if and only if 𝜙A is satisfiable (i.e., [[𝜙A]] ≠ ∅, meaning
that there exists an environment in which an implementation
of the contract can be used), and is consistent if and only
if 𝜙G is satisfiable (i.e., [[𝜙G]] ≠ ∅, meaning that the set of
required behaviors is nonempty). Given two saturated static
A/G-contracts 1 = (𝜙A1 , 𝜙

G
1) and 2 = (𝜙A2 , 𝜙

G
2), 1 refines

2, written 1 ⪯ 2, if and only if (𝜙A2 ⇒ 𝜙A1) ∧ (𝜙G1 ⇒ 𝜙G2)
is valid (i.e., the refinement accepts more environments and
provides stricter guarantees). Finally, the composition 1 ⊗
2 is a saturated static A/G-contract  = (𝜙A, 𝜙G) where
𝜙G = 𝜙G1 ∧ 𝜙G2 and 𝜙A = (𝜙A1 ∧ 𝜙A2) ∨ ¬𝜙G . The composi-
tion operator is associative and commutative.

Semantics of platforms and platform instances.
A platform  = (,) defines a set of platform instances
[[]]. In this section, we provide the definition of such set
and we also formulate the problem of checking whether a
given platform instance belongs to such set. Given a plat-
form instance I = (comp, con f , conn), we construct a static
A/G-contract I that takes into account contract instances in
comp, configuration constraints con f , connections conn and
assertion rules. Then, we construct a static A/G-contract v
for the validity rules. We use these two A/G-contracts to state
the conditions under which a platform instance belongs to a
platform. Figure 1 shows the roles played by the elements
of a platform instance in a design process. The set comp
corresponds to a contract  obtained by composition of all its
elements. Assertion rules are guaranteed by “nature” without
any further assumption (contract n). The platform instance
is configured by a designer who sets connections and defines
parameters. By doing so, the designer effectively guarantees
that all constraints in con f hold without further assumptions
(contract  f). Finally, validity rules are requirements that
must be satisfied by any platform instance belonging to [[]].
While assertion rules are composed with the components of
the platform instance as a component manifesting its own
behaviors, validity rules play a different role: they define ar-
chitectural requirements and therefore they must be “refined”
by the platform instance.
More formally, each contract instance c ∶ C in the

set comp, is associated with a static A/G-contract c =

(𝜙AC [VC → c.VC], 𝜙GC [VC → c.VC]) (where we have used the
notation 𝜙[x → y] to denote variable substitution, and nat-
urally extended the notation to sets so that 𝜙[X → c.X]
means 𝜙[x → c.x] for all x ∈ X). The semantics of the set
of components comp is a static A/G-contract [[comp]] =  =
⊗c∈compc.

Recall the definition of VI = ∪c∈comp{c.v ∶ v ∈ V𝜏(c)}, the
set of variables of a platform instance. Then, the semantics of
the set of constraints con f and the set of connections conn is
a static A/G-contract defined as follows:

[[𝑐𝑜𝑛𝑓 , 𝑐𝑜𝑛𝑛]] =  f =
(
𝜙A

f
, 𝜙G

f

)
=

(
true,

⋀
𝜋i∈con f

𝜋i ∧
⋀

(u,v)∈conn

Connected(u, v)

)
.

Assertion rules are also guaranteed to hold by “nature”
without any further assumption. Thus, the semantics of the
set of assertion rules A is a static A/G-contract defined as
follows:

[[A]] = n =
(
𝜙An , 𝜙

G
n

)
=

(
true,

⋀
r∈A

r

)
.

Consider now the set of validity rules V . They are ex-
pressed without restricting the set of environments to be ac-
cepted by a platform instance. The contract associated with
the validity rules is the following:

[[V]] = v =
(
true, 𝜙Gv

)
, where 𝜙Gv =

⋀
r∈V

r .

Given a platform instance I = (𝑐𝑜𝑚𝑝,𝑐𝑜𝑛𝑓 ,𝑐𝑜𝑛𝑛), its se-
mantics is a static A/G-contract [[I]] = I =  ⊗  f ⊗ n .
The semantics of a platform is a set of platform instances [[]]
such that I ∈ [[]] if and only if

• I is consistent and compatible: [[𝜙AI]] ≠ ∅ ∧ [[𝜙GI]] ≠ ∅
• I satisfies the validity rules in some environment: there
exists E = (𝜙AE , true) such that [[𝜙AE]] ≠ ∅ and I ⪯
v ⊗ E

Proposition 1. Let  be a platform and I a platform in-
stance. If 𝜙GI ⇒ 𝜙Gv is valid and [[𝜙AI ∧ 𝜙GI]] ≠ ∅, then I ∈
[[]].
Proof. The platform contract I must refine v ⊗ E =
(𝜙AE ∨ ¬𝜙Gv , 𝜙

G
v), meaning that 𝜙GI ⇒ 𝜙Gv and 𝜙AE ∨ ¬𝜙Gv ⇒

𝜙AI must both be valid. It remains to show that there ex-
ists a formula 𝜙AE such that [[𝜙AE]] ≠ ∅ and 𝜙AE ∨ ¬𝜙Gv ⇒ 𝜙AI
is valid. Since contracts are in canonical form, ¬𝜙AI ⇒ 𝜙GI
is valid, and (¬𝜙AI ⇒ 𝜙GI) ∧ (𝜙GI ⇒ 𝜙Gv) ⇒ (¬𝜙Gv ⇒ 𝜙AI).
Thus, the largest assumption that satisfies 𝜙AE ∨ ¬𝜙Gv ⇒ 𝜙AI
is 𝜙AE ≡ 𝜙AI ∧ 𝜙Gv . From [[𝜙AI ∧ 𝜙GI]] ≠ ∅ and 𝜙GI ⇒ 𝜙Gv we
can conclude [[𝜙AE]] ≠ ∅. Finally, from [[𝜙AI ∧ 𝜙GI]] ≠ ∅ we
conclude [[𝜙AI]] ≠ ∅ ∧ [[𝜙GI]] ≠ ∅, i.e., the platform instance is
consistent and compatible. ■

The condition [[𝜙AI ∧ 𝜙GI]] ≠ ∅ used in Proposition 1 is a
sufficient condition since [[𝜙AI ∧ 𝜙GI]] ⊆ [[𝜙AI ∧ 𝜙Gv]]. How-
ever, this condition is desirable for a platform since it guar-
antees the existence of implementations 𝜙M such that [[𝜙M ∧
𝜙AI]] ≠ ∅ and 𝜙M ∧ 𝜙AI ⇒ 𝜙GI .

Systems Engineering DOI 10.1002/sys

228 PINTO AND SANGIOVANNI VINCENTELLI

Set of Contract
Instances

Contract = 1

“Nature”

Guarantees assertion rules
Contract

Architecture configurator
Guarantees connections
and parameter setting

Contract

Domain knowledge/
Implementation constraints

Validity rules
Contract

Figure 1. Interpretation of the contracts that define a platform instance.

Corollary 1. Let  be a platform and I a platform instance.
Then, I ⊆ [[]] if the following conditions hold:

1. The following formula is unsatisfiable:

𝜙GI ∧ ¬
⋀
r∈V

r .

2. The following formula is satisfiable:⋀
c∶C∈comp

𝜙GC [VC → c.VC] ∧
⋀

𝜋i∈con f
𝜋i ∧⋀

(u,v)∈conn
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(u, v) ∧

⋀
r∈A

r ∧

⋀
c∶C∈comp

𝜙AC [VC → c.VC].

The first unsatisfiability condition is equivalent to the va-
lidity of ¬𝜙GI ∨ 𝜙Gv , or equivalently of 𝜙

G
I ⇒ 𝜙Gv . The second

satisfiability condition is equivalent to [[𝜙AI ∧ 𝜙GI]] ≠ ∅.
The satisfiability problem for the formulas in Corollary 1 is

undecidable in the general case. However, the following the-
orem provides decidability results for some classes of models
written in the CSL4P language.

Theorem 1. Given a platform instance I = (comp,
con f , conn) such that comp is a finite set of contract in-
stances, checking that I ⊆ [[]] is decidable.

Proof. Under the assumption of a finite set of components
comp = {c1,… , cn}, it is possible to eliminate second-order
terms and quantifiers. Assumptions and guarantees are quan-
tifier free formulas; thus it is sufficient to discuss the elimina-
tion of quantifiers from rules. Recall that rules can be of two
types: ∀c ∶ C .𝜙(c) or ∃c ∶ C .𝜙(c) where C is a contract type
and 𝜙(c) is a formula of the same form or a quantifier free
formula. Let E(𝜙, comp) denote the quantifier elimination
operator such that 𝜙 is a formula with the same form as rules
and comp is a finite set of contract instances:

E(𝜙, comp) =
⎧⎪⎨⎪⎩

⋀
c∶C∈comp

E(𝜓(c), comp) if 𝜙 ≡ ∀c ∶ C .𝜓(c)⋁
c∶C∈comp

E(𝜓(c), comp) if 𝜙 ≡ ∃c ∶ C .𝜓(c)

𝜙 otherwise.

(1)

A second-order term 
c∶C|r (c)c.v can be expanded to:

E(r ′(c1), comp) ⋅ c1.v o … o E(r ′(cn), comp) ⋅ cn .v

We have used the notation 𝜙 ⋅ v in the expansion where 𝜙
is a formula and v is a variable. The meaning of this notation
is the following: True ⋅ v = v and False ⋅ v = eo.
After eliminating quantifiers and second-order expressions,

the validity of I ⊆ [[]] is equivalent to solving two satisfi-
ability problems (Corollary 1) of quantifier-free formulas in
the theory TEUF ∪ Tℝ which is decidable [Tinelli and Zarba,
2004]. ■

2.5. Complexity and Expressiveness

The verification of platform instances reduces to satisfiability
of quantifier free FOL formulas. Because CSL4P relies on an
SMT solver, it is possible to expand the signature Σ defined
in Section 2.2 by composing theories. In this paper, we have
used the theory of equality and uninterpreted functions TEUF ,
and the theory of real numbers Tℝ, but there are no technical
difficulties in adding other theories such as the theory of
arrays. The complexity of solving the membership problem
is therefore the same as the complexity of the satisfiability
problem for quantifier free formulas in SMT.
The CSL4P language relies on FOL which is sufficiently

expressive to capture relations among objects. The extensions
in CSL4P support the definition of relations among sets of
objects, but only for special kinds of operators that satisfy the
requirements in Section 2.3. However, CSL4P is not a higher
order language and therefore does not support in general the
definition of relations among relations. This feature could
be very useful to further generalize the notion of composi-
tion and the way in which assumptions and guarantees are
composed. In fact, the composition operator on contracts
takes two (A,G) pairs, which are relations, and maps them to
another pair (A,G). This mapping could be expressed directly
in a higher order language rather than being hard-coded in the
compilation algorithm.

Systems Engineering DOI 10.1002/sys

CSL4P: A CONTRACT SPECIFICATION LANGUAGE FOR PLATFORMS 229

3. CSL4P DEVELOPMENT ENVIRONMENT

CSL4P models are edited in a dedicated environment based
on the Eclipse9 framework. The environment has been built
using the Xtext10 Textual Modeling Framework (TMF) that
allows defining the grammar of a domain specific language,
creating custom scoping mechanisms, developing code gen-
erators, and implementing specialized routines to check prob-
lems such as type consistency. The CSL4P language requires
checking more advanced properties such as that an architec-
ture belongs to a platforms (the problem defined by Theo-
rem 1). Thus, the development environment includes a com-
piler and a Satisfiability Modulo Theories (SMT) solver. The
compiler translates a model of an architecture into an SMT
problem instance, and an SMT solver is used to check if the
architecture is correctly specified. SMT solvers are capable
of answering the following question: given a certain context
Φ (i.e., a set of sentences that are asserted to hold) and given
a formula 𝜙 (also called query), does the context entail the
formula? Formally, an SMT solver checks for the validity of
the following formulaΦ ⊧ 𝜙. In this section we describe how
the membership problem is compiled into an instance of an
SMT problem.
Let I = (comp, con f , conn) be an instance of a platform

 = (,). The first step in the encoding of the member-
ship problem is the definition of the contract types. A con-
tract type Ci ∈  is encoded as a record type that defines
all the variables of the contract type, and three predicates
for the assumption 𝜙Ai , the guarantee 𝜙Gi and the saturated
guarantee 𝜙G ∨ ¬𝜙Ai . The elements of the record type are
recursively defined as follows. The variables Vi are part of
the record. If a contract type C j ∈  is such that Ci ⊳ C j ,
then the record also includes all the variables of the record
type for C j . In addition, the record includes a special vari-
able named port of type Interface that is used to de-
fine connections among contract instances. The reason for
introducing this variable is that languages available to ex-
press SMT problems do not support sub-typing. Thus, it is
not possible to define a generic type Contract and then let
all other contract type extend it. Therefore, it would not be
possible to encode the Connected predicate. By introducing
variable port in each contract, such predicate can now be
encoded by an equivalent predicate symbol Connected of
arity (Interface,Interface). For example, the variables
of the contract type Generator presented in Section 2.1 are
encoded by a record type (R Real, v0 Real, i Real, v
Real, port Interface). Each contract type is associated
with three predicates: the assumption A_C, the guarantee G_C,
and the guarantee Gp_C of the saturated contract. The follow-
ing listing shows the SMT code for contract type Generator
in the CVC language 11:

Generator : TYPE = [# R : REAL , v0 : REAL , i : REAL ,
v : REAL , port : Interface #] ;

A_Generator : Generator -> BOOLEAN = LAMBDA(c : Generator) :
c.v0*c.i<= 200000;

G_Generator : Generator -> BOOLEAN = LAMBDA(c : Generator) :
c.v=c.v0 - c.R*c.i ;

Gp_Generator : Generator -> BOOLEAN = LAMBDA(c : Generator) :
G_Generator(c) OR NOT A_Generator(c);

Once contract types have been defined, it is possible to
declare constants corresponding to contract instances. For
each contract instance c ∶ C ∈ comp, a constant c:C is added
to the context of the SMT solver.
ContractC f is defined by two guarantee predicates G_conf

and G_conn corresponding to the set of constraints and con-
nections defined by the designer of the platform instance.
G_conf is the conjunction of all constraints in con f . These
constraints are ground and can be directly used in the def-
inition of the predicate. G_conn is the conjunction of all
connection constraints: 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 (c1, c2) is encoded by the
predicate Connected(c1.port,c2.port).

Assertion and validity rules require quantifier elimination.
LetC be a contract type and comp(C) = {c1,… , ck} ⊆ comp
be the set of contract instances of type C . Let rai ∈ A be an
assertion rule (either of the form ∀c ∶ C .𝜙(c), or ∃c ∶ C .𝜙(c).
Then the following predicate is generated:

RA_i : BOOLEAN = f(c1) B ... B f(ck)

where B=AND for universally quantified rules and B=OR for
existentially quantified rules, and f(ci) is the encoding of
𝜙(ci) obtained by quantifier elimination.
For second-order terms 

c∶C|r (c)c.v , the compiler generates

the following term:

IF r(c1) THEN c1.v ELSE eo ENDIF o … o IF r(ck)
THEN ck .v ELSE eo ENDIF

The same procedure is used to compile a validity rule rvi
into the corresponding SMT predicate RV_i. Finally, the plat-
form instance guarantee G can be generated as the following
predicate:

𝙶 =
⋀

c∈comp,C=𝜏(c)
𝙶𝚙 𝙲(𝚌) ∧

⋀
i∈[1,a]

𝚁𝙰 𝚒 ∧ 𝙶 𝚌𝚘𝚗𝚏 ∧ 𝙶 𝚌𝚘𝚗𝚗,

and the platform instance assumption A as the following
predicate:

𝙰 =

(⋀
c∈comp,C=𝜏(c)

𝙰 𝙲(𝚌)

)
∨ ¬𝙶.

Two queries are generated: the first query checks for the
validity of the following formula:

𝙶 ⇒
⋀
j∈[1,v]

𝚁𝚅 𝚓,

while the second query checks for the satisfiability of 𝙰 ∧ 𝙶.

4. APPLICATION EXAMPLE

The preliminary design of a new aircraft must take into ac-
count the interactions among several sub-systems such as
propulsion, thermal management and electric power genera-
tion and distribution. A platform for preliminary design con-
tains contract types modeling components that are used in all
of these sub-systems. These components are characterized by
different aspects or views such as mechanical, thermal and
electric. Contract based design supports multiple view-points.
Let 1 = (𝜙A1 , 𝜙

G
1) and 2 = (𝜙A2 , 𝜙

G
2) be two A/G-contracts.

Their conjunction is  = (𝜙A, 𝜙G) = 1 ∧ 2 such that 𝜙
A =

Systems Engineering DOI 10.1002/sys

230 PINTO AND SANGIOVANNI VINCENTELLI

𝜙A1 ∨ 𝜙A2 and 𝜙G = 𝜙G1 ∧ 𝜙G2 . When combined with the con-
junction operator, 1 and 2 are called views. CSL4P supports
the definition of multiple views. They are conjoined as first
step of the compilation process.
In this section, we describe a platform for preliminary de-

sign and show the CSL4P verification flow.

Contract types. The platform for preliminary design
contains the following contract types: fuel tanks, electric
pumps, heat loads, air-fuel heat exchangers, engines, fuel
splitters, electric power generators and electric loads. This
example is taken from [Mathew and Pinto, 2011] and [Murray
et al., 2011].
To show the concrete syntax of the language and explain

some extra features that the development environment pro-
vides, we start by presenting the model of a load in the electric
power system:

plat form a i r c r a f t p r e l im i n a r y d e s i g n {
component HeatSource {

var heat Real ;
}
component Elec t r i cLoad
{

var v Real ; var i Real ;
}
component Load extends HeatSource , E l ec t r i cLoad {

view E l e c t r i c a l {
var vnom Real ; var pnom Real ;
guarantee {

i f (v>=9/10∗vnom and v <= 11/10∗vnom)
(vnom∗ i = pnom)

else
(i = 0) ;

}
}
view Thermal {

var vnom Real ; var pnom Real ;
var e f f Real ;
guarantee {

i f (v>=9/10∗vnom and v <= 11/10∗vnom)
(heat = pnom∗ e f f)

else
(heat = 0) ;

}
}

}
. . .

A contract type definition for a component starts with the
keyword “component,” while a contract type for a view starts
with the keyword “view.” The keyword is then followed by the
name of the type and possible extensions as in object oriented
programming. The Load type extends the two basic interfaces
by adding the Electrical and the Thermal views. The
extension mechanism is just a convenient way of defining a
type hierarchy (and also specifying the ordering ⊳ defined in
Section 2.2). In this example, a contract of type Load is also
of type HeatSource and of type ElectricLoad. Moreover,
the extension mechanism is used to define common variables
that belong to all contracts of that class. The model of the

load is slightly different from the one presented in Section 2.1.
In this model, the load absorbs constant power if the voltage
is within a range around the nominal value, otherwise the
load disconnects from the power distribution system (and
does not generate any heat)12. This is not the only way to
model such a contract. For example, an alternative model
could include two views: the nominal view with assump-
tion v>=9/10*vnom and v <= 11/10*vnom and guaran-
tee vnom*i = pnom, and an off-nominal view with assump-
tion not (v>=9/10*vnom and v <= 11/10*vnom) and
guarantee i = 0. Also, common assumption among views
(such as v>=9/10*vnom and v <= 11/10*vnom) could
be defined in a base type which is then extended by views
sharing such assumption. In this section we briefly describe
the other contracts and a platform instance to show the verifi-
cation flow.

Fuel tanks, heat loads, splitters, engines, heat exchangers
and electric pumps are all components used in the fuel and
thermal management systems. They have one “inlet” and one
“outlet,” except splitters which have two outlets. Inlets and
outlets are ports characterized by two variables: the flow rate
and the temperature. Electric pumps have also an additional
power port that connects to electric power generators.
Figure 2 shows a platform instance built using these com-

ponents. A pump moves fuel in a circuit around the aircraft
while a heat load transfers heat from several sources to the
fuel. The splitter (a passive component) is used to connect
both the engine and the return path to the main fuel circuit.

Systems Engineering DOI 10.1002/sys

CSL4P: A CONTRACT SPECIFICATION LANGUAGE FOR PLATFORMS 231

Fuel tank

Electric pump Heat Load

Splitter

Heat exchanger

Generator Load

Engine

(heat)

Heat
Source

,

, , ,

,

,
,

,

,,

, , ,, ,

,

Mechanical

Electrical

Thermal

Figure 2. A platform instance derived from the platform described in this section. This instance refers to an aircraft configuration where fuel
is used as a coolant and pumps are electric.

The engine consumes fuel from the main circuit to generate
thrust. The fuel not used by the engine is sent to a heat
exchanger which decreases its temperature before sending
it back to the fuel tank. Connections (shown as arrows in
Figure 2) are of three different types: mechanical connections
transport mass, electrical connections transport current, and
heat connections only transport heat.
During flight, and without considering in-air refueling, the

flow rate at the inlet of the fuel tank should be smaller than the
flow rate at the outlet (an assumption in the contract type for
fuel tanks). The heat load contract guarantees that the heat at
its input is completely transferred to the fuel which heats up
while transiting from the input to the output of the heat load.
The engine guarantee is the following: if the fuel temperature
is within a certain range, then the engine consumes fuel and
generates heat at nominal rates, otherwise the engine does not
consume any fuel and does not generate any heat. The fuel
pump guarantees that the flow rate at its output is maintained
at a constant value (a parameter of the model). To meet this
guarantee, the voltage level provided by the electric power
generator must be within a certain range. If this assumption
is satisfied, then the pump also guarantees to absorb a certain
power level from the electric power generator that depends
on the flow rate and pressure drop value. Finally, the heat
exchanger guarantees to decrease the temperature of the fuel
depending on the temperature of the outside air and on the ef-
fectiveness parameter (a design parameter of the component).

Platform Rules. The following assertion rules are bal-
ance equations for heat and current:

assertion rule to ta lHeat {
f o ra l l hl : Heatload ,

h l . h = Sum{c : Component | Connected(c , h l) } [h]
}
assertion rule to ta lCur rent {

f o ra l l g : Generator ,
g . i = Sum{c : Component | Connected(g , c) } [i]

}
assertion rule h e a t I sPo s i t i v e {

f o ra l l hl : HeatSource ,
h l . h >= 0

We now introduce a validity rule. In these types of systems,
it is desirable to keep the temperature of the fuel tank constant.
This is a validity rule and not an assumption of the fuel tank
because it is an architectural choice and not a limitation of the
component itself.

validity rule fuelTankTemperature {
f o ra l l f t : FuelTank ,

(f t . f i n > 0) implies (f t . t i n <= f t . tout+5
and f t . t i n >= f t . tout −5);

Systems Engineering DOI 10.1002/sys

232 PINTO AND SANGIOVANNI VINCENTELLI

Platform instance and verification. The platform in-
stance in Figure 2 corresponds to the following architecture
model in CSL4P:

architecture arch from a i r c r a f t p r e l im i n a r y d e s i g n {
fuelTank FuelTank ;
pump ElectricPump ;
heatLoad HeatLoad ;
s p l i t t e r S p l i t t e r ;
eng ine Engine ;
hex HeatExchanger ;
g Generator ;
l Load ;
hs HeatSource ;
//Parameter s e t t i n g s
fuelTank . tout = 15 ;
pump . vnom = 270 ;
. . .

//Connections
connected (fuelTank . tout , pump . t i n) ;
connected (fuelTank . fout , pump . f i n) ;
connected (pump . tout , heatLoad . t i n) ;
connected (pump . fout , heatLoad . f i n) ;
connected (heatLoad . tout , s p l i t t e r . t i n) ;
connected (heatLoad . fout , s p l i t t e r . f i n) ;
connected (s p l i t t e r . f1 , eng ine . f i n) ;
connected (s p l i t t e r . t1 , eng ine . t i n) ;
connected (s p l i t t e r . f2 , hex . f i n) ;
connected (s p l i t t e r . t2 , hex . t i n) ;
connected (hex . tout , fuelTank . t r e t) ;
connected (hex . fout , fuelTank . f r e t) ;
connected (g . v , pump . v) ;
connected (g . v , l . v) ;
connected (l , heatLoad) ;
connected (g , heatLoad) ;
connected (hs , heatLoad) ;
connected (engine , heatLoad) ;

The set of constraints imposed by the platform configurator
assign values to the parameters of each component. The sys-
tem is coupled in many ways: The engine is expecting fuel at
a certain temperature that is regulated by the fuel flow rate. A
higher fuel flow rate implies a lower temperature at the engine
inlet. However, the part of the fuel that is not used by the en-
gine returns to the tank through a heat exchanger which needs
to be sized so that fuel returning to the tank is appropriately
cooled (not too hot and not too cold). Moreover, adjusting the
flow rate had an impact on the power and the heat generated
by the electric power generator. The effectiveness of the heat
exchanger and the flow rate are two key parameters. The list
of relevant parameters is the following:

• Fuel tank: 𝑡𝑜𝑢𝑡 = 15 ;
• electric pump : flow rate 0 ≤ f ≤ 5
• engine: 𝑡𝑚𝑎𝑥 = 112, 𝑡𝑚𝑖𝑛 = 51, (nominal fuel consump-
tion) 𝑓𝑛𝑜𝑚 = 0.7, (nominal heat) ℎ𝑛𝑜𝑚 = 40;

• heat exchanger: (outside air temperature) 𝑡𝑎𝑖𝑟 = −30,
(effectiveness) 0.1 ≤ 𝑒𝑓𝑓 ≤ 0.6;

• electric load : 𝑝𝑜𝑤𝑒𝑟 = 150, 000, (efficiency) 𝑒𝑓𝑓 =
0.85;

• heat source : h = 60, 000

In a typical session, a system engineer interacts with the
tools: the model is modified, the SMT problem is generated
and the solver is queried with the three satisfiability problems
in Theorem 1. The result of these queries can be used to guide
new changes to the model until the system engineer finds a
good configuration.
We started with an initial configuration 13 where f = 0.7

for the pump and e f f = 0.3 for the heat exchanger. The guar-
antee and the assumption of the platform instance are both
satisfiable (conditions 1 and 2 from Theorem 1). However,
validity rules are not satisfied. The last query submitted to the
SMT solver is to check for the validity of G ⇒ RVwhere RV is
the conjunction of all validity rules. Since this query is invalid,
we can ask the SMT solver to produce a counter-model, part
of which is listed below:

...
ASSERT (fuelTank = (# fout := 7/10, fin := 7/10, tin := 800, tout := 15...
...
ASSERT (engine = (# tmax := 112, fnom := 7/10, fout := 800, hnom := 40000,

fin := 0, tmin := 51, tin := 8090/7, h := 0, port := (engine).port #));
...

The temperature at the inlet of the engine is too high. As
a consequence, the engine cannot run and cannot consume
fuel. In fact, the fuel tank input flow rate is equal to the output
flow rate but the fuel going back to the tank is at a very high
temperature which violates the validity rules.
To solve this problem we first increase the flow rate of the

pump to f = 2. The temperature of the fuel at the engine
drops to 63, but the temperature at the inlet of the fuel tank
is 35 which is still too high and violates the validity rules.
Increasing the effectiveness of the heat exchanger to 0.55
results in a valid instance.

5. CONCLUSIONS

We presented CSL4P, a language for the contract-based spec-
ification of platforms. The language support the definition of
platforms as a set of contract types and composition rules. A
platform instance can be created by instantiating, configuring
and connecting instances of contract types. The semantics
of a platform instance is a static A/G-contract derived from
its components, the configuration constraints, the connec-
tion statements, and the assertion rules of the platform. The
semantics of a platform is a set of platform instances that
are consistent and compatible, and that refine a static A/G-
contract associated with the validity rules.
CSL4P is a first step toward a language that satisfies the

requirements introduced in Section 1. The language is based
on Order-Sorted First Order Logic which is expressive and
generic, making CSL4P suitable as a modeling language
across several application domains. Its signature can be
extend by introducing new functions, predicates and types,
and by combining theories as described in Section 2.2. The
concrete syntax, as shown in Section 4, has been developed to
provide a simple way of defining types, type extensions, con-
tracts, rules and platform instances (R6). Product families are
captured by platforms which represent sets of architectures

Systems Engineering DOI 10.1002/sys

CSL4P: A CONTRACT SPECIFICATION LANGUAGE FOR PLATFORMS 233

that conform to certain rules (R5). The use of contracts en-
ables combination of viewpoints, refinement checking among
platform instances, and the abstraction of implementations at
their interfaces (R1, R2, R3). Moreover, CSL4P enjoys the
compositional properties that have been already shown for
contracts in general [Benveniste et al., 2012] (R4).
Finally, we have presented a development environment for

CSL4Pwhich includes an editor and a compiler. The compiler
accepts a CSL4P model and generates the input for an SMT
solver that checks whether a platform instance belongs to a
certain platform by solving three satisfiability problems. We
have shown an application example where CSL4P has been
used to model an architecture for the preliminary design of a
prototypical aircraft.

ENDNOTE

1. See http://www.terraswarm.org/ for the TerraSwarm
Center, part of the SMARTnet, which has as object the
design of these systems

2. http://www.mathworks.com/products/simulink/
3. http://www.omg.org/spec/SysML/
4. http://www.omg.org/spec/OCL/
5. http://www.pace.de/
6. http://www.speeds.eu.com/downloads/D_2_5_4_RE_

Contract_Specification_Language.pdf
7. We will always omit unit of measure to avoid in-

troducing inconsistencies between examples written
in pseudo-code and explanations in natural language.
CSL4P is expressive enough to capture unit of mea-
sure through predicates over terms. In this example,
the model could be expanded by introducing the as-
sumption unitOfMeasure(i , Ampere), and the guarantee
unitOfMeasure(v , Volt), where unitOfMeasure is a rela-
tion between terms and units of measure. Also notice that
assertion rules could be used to define the unit of measure
for derived terms. For example, the following rule defines
the unit of measure for the product of current and voltage:
∀ x : Real, ∀ y : Real, unitOfMeasure(x , Ampere) ∧
unitOfMeasure(y, Volt)⇒ unitOfMeasure(i ⋅ v ,Watt).

8. http://www.omg.org/spec/OCL/2.4/ Section 7.6.6
9. https://www.eclipse.org/

10. http://www.eclipse.org/Xtext/
11. http://cvc4.cs.nyu.edu/wiki/CVC4%27s_native_language
12. The full model can be found at http://www.alessandrop

into.net/csl4p
13. We will omit the unit of measure for brevity

REFERENCES

Military Standard: Engineering Management, Department of De-
fense, 1974.

Military Standard: System Engineering, Department of Defense,
1993.

ANSI/GEIA EIA-632, Processes for Engineering a System,
ANSI/GEIA, 2003.

Systems and software engineering – System life cycle processes,
ISO/IEC, 2003.

P. Alexander, System-Level Design with Rosetta, Morgan Kauf-
mann, 2006.

A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple viewpoint contract-based specifica-
tion and design,” in F. de Boer, M. Bonsangue, S. Graf, and W.-
P. de Roever (Editors), Formal methods for components and ob-
jects, vol. 5382 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2008, pp. 200–225.

A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Hen-
zinger, and K. G. Larsen, Contracts for System Design, Rapport
de recherche RR-8147, INRIA, Nov. 2012.

C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, andH. Zheng,
Heterogeneous concurrent modeling and design in java (volume
1: Introduction to ptolemy ii), Tech. Rep. UCB/EECS-2008-28,
EECSDepartment, University of California, Berkeley, Apr 2008.

E.W. Dijkstra, A Discipline of Programming, Prentice Hall, 1976.
Original from the University of Michigan Digitized Jan 18, 2007
ISBN 013215871X, 9780132158718 Length 217 pages.

L. de Alfaro and T.A. Henzinger, Interface automata, Proc. Symp.
Foundations of Software Engineering, ACM Press, 2001, pp.
109–120.

A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle, Improving
SAT modulo ODE for hybrid systems analysis by combining
different enclosure methods, Proceedings of the 9th Interna-
tional Conference on Software Engineering and FormalMethods,
SEFM’11 (Berlin, Heidelberg), Springer-Verlag, 2011, pp. 172–
187.

K. Forsberg and H. Mooz, System engineering for faster, cheaper,
better, 1998.

R.W. Floyd, Assigning meanings to programs, Mathematical aspects
of computer science, 19(19-32) (1967), 1.

P. Feiler, Modeling of system families, Tech. Rep. CMU/SEI-2007-
TN-047, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, 2007.

P. Fritzson, Principles of Object-Oriented Modeling and Simulation
with Modelica, Wiley-IEEE Computer Society Pr, 2003.

M. Frnzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, Efficient
solving of large nonlinear arithmetic constraint systems with
complex boolean structure, Journal on Satisfiability, Boolean
Modeling and Computation, 1 (2007), 209–236.

H. Giese, Contract-based component system design, in Proc. 33rd
Annual Hawaii Int System Sciences Conf, 2000.

S. Gao, S. Kong, and E.M. Clarke, dreal: An smt solver for nonlinear
theories over the reals., in CADE (M.P. Bonacina, ed.), vol. 7898
of Lecture Notes in Computer Science, Springer, 2013, pp. 208–
214.

C.A.R. Hoare, An axiomatic basis for computer programming, Com-
mun. ACM, 12 (Oct. 1969), 576–580,.

IEEE, Std 1076-2000: IEEE Standard VHDL Language Reference
Manual, IEEE, 2000.

E.K. Jackson, E. Kang,M.Dahlweid, D. Seifert, and T. Santen, Com-
ponents, platforms and possibilities: towards generic automation
forMDA, Proceedings of the tenthACM international conference
on Embedded software, EMSOFT ’10, (New York, NY, USA),
ACM, 2010, pp. 39–48.

D. Jackson, Software Abstractions: Logic, Language, and Analysis,
The MIT Press, 2006.

A. Jardin, D. Bouskela, T. Nguyen, N. Ruel, E. Thomas, L.
Chastanet, R. Schoenig, and S. Loembe, Modelling of system

Systems Engineering DOI 10.1002/sys

234 PINTO AND SANGIOVANNI VINCENTELLI

properties in a Modelica framework, in Proc. of the 8th Inter-
national Modelica Conference, 2011.

D. Jovanovi and L. de Moura, Solving non-linear arithmetic, Pro-
ceedings of the 6th International Joint Conference on Automated
Deduction, 2012.

D.C. Karnopp, D.L. Margolis, and R.C. Rosenberg, System Dy-
namics: Modeling and Simulation of Mechatronic Systems, New
York, NY, USA: John Wiley & Sons, Inc., 2006.

Z. Manna and C. Zarba, “Combining decision procedures,” in For-
mal Methods at the Crossroads. From Panacea to Foundational
Support (B. Aichernig and T. Maibaum, eds.), vol. 2757 of Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg,
2003, pp. 381–422.

G.A. Mathew and A. Pinto, Stochastic analysis and design of sys-
tems, tech. rep., DARPA V2D2 Study (#FA9550-10-C-0116)
Final Report, 2011.

B.T. Murray, A. Pinto, R. Skelding, O. de Weck, H. Zhu, S. Nair, N.
Shougarian, K. Sinha, S. Bopardikar, and L. Zeidner, Complex
systems design and analysis (CODA), tech. rep., DARPAMETA
II (#FA8650-10-C-7080) Final Report, 2011.

P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli,
Methodology for the design of analog integrated interfaces using
contracts, IEEE Sensors J., 12 (Dec. 2012), 3329–3345.

P. Nuzzo, A. Puggelli, S.A. Seshia, and A.L. Sangiovanni-
Vincentelli, CalCS: SMT solving for non-linear convex con-
straints, Proceedings of the IEEE International Conference on
Formal Methods in Computer-Aided Design (FMCAD), October
2010, pp. 71–79.

Open SystemC Initiative, IEEE 1666: SystemC Language Reference
Manual, www.systemc.org.

A. Pinto, A. Bonivento, A.L. Sangiovanni-Vincentelli, R. Passerone,
and M. Sgroi, System level design paradigms: Platform-based
design and communication synthesis, ACM Trans. Des. Autom.
Electron. Syst., 11 (June 2004), 537–563.

A.L. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, Taming
Dr. frankenstein: Contract-based design for cyber-physical sys-
tems, Eur. J. Control, 18(3) (2012), pp. 217–238.

A. Sangiovanni-Vincentelli, The tides of eda, IEEE Des. Test, 20
(Nov. 2003), 59–75.

A. Sangiovanni-Vincentelli, Quo vadis, sld?: Reasoning about the
trends and challenges of system level design, Proc. IEEE 95
(2007), 467–506.

G. Tassey, The economic impacts of inadequate infrastructure for
software testing, tech. rep., National Institute of Standards and
Technology, 2002.

S. Tripakis, B. Lickly, T.A. Henzinger, and E.A. Lee, A theory of
synchronous relational interfaces, ACM Trans. Program. Lang.
Syst., 33 (July 2011), 14:1–14:41.

C. Tinelli and C. Zarba, Combining decision procedures for sorted
theories, Proceedings of the 9th European Conference on Logic
in Artificial Intelligence (JELIA’04), Lisbon, Portugal (J. Alferes
and J. Leite, eds.), vol. 3229 of Lecture Notes in Artificial Intel-
ligence, Springer, 2004, pp. 641–653.

Architecture Analysis & Design Language (AADL), Tech. Rep.
AS5506 Rev. B, SAE International, Sept 2012.

Systems Engineering DOI 10.1002/sys

