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Developing design tools for uncertain systems in an industrial setting

Alessandro Pinto, Sudha Krishnamurthy

Abstract— We motivate the need for a cyber-physical system
analysis and design tool that embraces uncertainty as key
characteristic of these type of systems. We outline the features
that such tool should provide and we present a prototype
implementation. The challenges faced during its development go
beyond the sheer complexity of analyzing large Markov Models.
We close the paper with some examples of analysis of uncertain
systems.

I. INTRODUCTION

There are several reasons why design paradigms for cyber-
physical systems should include the notion of uncertainty.
The physical side of the system (i.e. the plant that the cyber
side controls) is only known to some extent. For example, the
weather condition that an aircraft will face during a mission
is a random parameter, and it becomes a stochastic process
for long distance missions. Even when the dynamic behavior
of the environment is not subject to any randomness, the
parameters of its model may not be known exactly either
because difficult to measure, difficult to control during the
manufacturing process, or simply because of an abstraction
process required to limit the complexity of an accurate
model.

The cyber side of the system comprises the control soft-
ware, the hardware and the communication network, and is
subject to random failures and data dependent performance
metrics. Optimal control strategies rely on the solution of
optimization problems whose run-time depends on the input
data. Moreover, the worst case execution time of software
is data dependent because of low level implementation tech-
niques such as cache memories, branch prediction, pipeline
execution etc. Notoriously, communication delays are also
uncertain, especially when collision-based and wireless pro-
tocols are used.

Many techniques have been developed to analyze systems
in the presence of uncertainty. For instance, fault tree anal-
ysis [1] is used to compute the probability that an event
occurs starting from the probabilities (assumed known) that
basic events occur. Markov Chain based methods [2] have
also been used for reliability and performance analysis.
Uncertainty quantification is well studied for dynamical sys-
tems (see e.g. [3], [4]). Lately, model checking techniques
have been extended to probabilistic systems, so that Markov
Chains or Markov Decision Processes can be checked against
a specification defined by a probabilistic temporal logic
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formula [5]. Together with analysis techniques, several lan-
guages have been introduced to capture uncertain systems,
such as Stochastic Petri Nets [6] and Stochastic Automata
Networks [7]. These languages allow to describe the system
using a formal model that is more abstract than their underly-
ing Markov processes. Nevertheless, a description captured
in such languages is always translated into the underlying
Markov model for quantitative analysis.

These tools and languages provide a solid groundwork to
enable the analysis and design of uncertain systems. How-
ever, the adoption of these tools in industrial design flows is
not straightforward. There is a semantic gap between the sys-
tem specification captured using domain specific languages
(e.g. Simulink [8], [9]), and the input to many analysis
and design flows for uncertain systems. Deriving a model
of a system at the level of abstraction in which it can be
analyzed by these tools is often done manually, and becomes
a tedious, difficult, and error prone process. Further, control
algorithms and hardware/software architectures are devel-
oped by different teams within the same organization, or by
different organizations. These two aspects should be brought
together in a virtual environment to allow exploration of
different implementation options [10]. Finally, verification
of correctness and assessment of performance are not the
only type of questions to be answered. A realistic design
environment should also provide some parametric analysis
capability to perform design space exploration. However,
when one attempts to derive a probabilistic model from a
system specification using automatic model extraction tools,
the state space of the resulting model may grow rapidly
if such tools cannot make any specific assumption on the
input model. Thus, these tools should be able to leverage
the structure of the model to simplify the subsequent analysis
task.

This article presents some of the ideas that have been
implemented in a design tool for uncertain systems. We
define the type of system specifications of interest (Sec-
tion II) and the structure of a tool that provides the features
outlined in this introduction (Section III). Then, we present
the challenges in extracting probabilistic models from spec-
ifications (Section IV). We present some of the challenges
in implementing the back-end analysis tool (Section V) and
we conclude with some examples (Section VI).

II. ANATOMY OF A SYSTEM SPECIFICATION

The input to a design process is the specification of the
system requirements. From these requirements, a set of mod-
els are constructed using model-based design environments.
Because systems are often heterogeneous, a typical design



Fig. 1. High level view of the specification of a networked control systems.

flow may involve the use of several languages and tools
depending on which aspect of the system the modeler is in-
terested in capturing. For example, control algorithms may be
captured using Simulink/Stateflow, while the hardware and
software architecture may be modeled using a different lan-
guage such as AADL [11]. Figure 1 shows a high-level view
of a systems specification. The model is divided into two
parts: The functional specification (top) and the architectural
specification (bottom). The functional specification consists
of a model of the dynamic behavior of the physical part of
the system (i.e. the plant), and a model of the control logic
that can be though of as a set of communicating Extended
Finite State Machines (EFSM [12]). The dynamics of the
plant is affected by noise (a stochastic process ζ (t)) and by
uncertainty in some of its parameters (the vector of random
variables ξ ). At this abstraction level, the digital controller
is considered ideal, meaning that resource constraints are
not embedded in the model. This abstraction removes part
of the uncertainty coming from performance metrics and
failures. However, transitions in the EFSM may be guarded
by expressions that make explicit reference to the state of the
plant (x ∈ G in Figure 1) which is a random process, hence
transitions are taken with some probability.

The architecture comprises the description of the hard-
ware (which includes processors, storage elements, commu-
nication networks and interconnections among them), and
the software (which includes processes, threads, schedulers
and I/O interfaces). An architectural component may be
characterized by a behavioral model as well. For example,
the scheduler used by the real-time operating system or
by the communication protocol is implemented by a state
machine. Moreover, architectural components are annotated
with performance metrics such as delay and failure rate.
As remarked in the introduction, performance metrics are
usually probabilistic and may be available only after the
functional model has been bound to the architectural compo-
nents. For example, the execution time of a thread depends

Fig. 2. Description of the design tool for uncertain systems.

on the content of the thread (i.e. the EFSM bound to it).

III. ANATOMY OF A DESIGN TOOL

A tool to analyze and design these type of systems
must be independent from the input model and should
only be based on the assumptions that can be made about
the modeling languages used to capture the specification.
This tool should accept a functional model described as
a stochastic hybrid system [13], an architectural model
including performance annotations, and the specification of
the binding of the functionality (i.e. the controller) on the
architectural resources (i.e. processors, networks and storage
elements). Designers should be given the opportunity to
define parametric uncertainties in the input model, namely
symbolic variables representing transition probabilities, that
can be used to sweep over a range of possible values in the
performance analysis step. Because of the complexity of the
system description, the result of the analysis step is typically
difficult to interpret. Thus, designers should also be provided
with a practical way of getting insightful information from
the result of the analysis.

Figure 2 shows the architecture of the tool we developed.
To provide all the aforementioned features, the tool is divided
into two parts, a front-end and a back-end, that exchange data
over an intermediate modeling language.

The functional and architectural specifications are first
translated into an intermediate model. The semantics of the
intermediate language is Stochastic Automata Networks and
is described in details in Section IV-A. The functional speci-
fication is bound to the hardware components at the level of
the intermediate language (because function and architecture
are defined using different languages). The user provides
binding information as input to the tool. The intermediate
model is then passed to a back-end tool for analysis.

The first step in the analysis of the model is to com-
pute the set of states that can be reached by the system.



In fact, the intermediate model is in the form of a set
of automata that interact using synchronization primitives.
This interaction restricts the set of reachable states. The
intermediate model is first parsed and then encoded into
a Binary Decision Diagram [14][15] to perform symbolic
reachability analysis. The result of the reachability analysis
is the set of all reachable states. It is possible to store,
as a byproduct of the reachability algorithm, the set of
transitions between reachable sates. This set can be used to
construct the infinitesimal generator of the Markov Chain
(MC) underlying the system. The MC is then solved by
standard techniques for transient analysis [2], or it can be
used for probabilistic model checking [16][17][5]. If the goal
is performance analysis, the tool allows the user to provide
a configuration file that can be used to filter the data and
provide projections of the results along some of the states
(e.g. “probability of being in an unsafe state at all time”).
The tool also allows to define parameters instead of numeric
transition rates. These parameters can be used for quick
comparison of different system configuration, or they can
be directly used in optimization problems.

Remarkably, our implementation shows that the the front-
end development effort (6 thousands lines of code) is compa-
rable with the back-end develop effort, even for the restricted
subset of the input languages that we are able to translate
at the moment. This result highlights the importance of the
model extraction problem, from high-level description to
analyzable probabilistic models.

IV. FRONT-END DEVELOPMENT AND CHALLENGES

A. Intermediate model

The choice of the intermediate representation of the system
is crucial. It needs to be amenable to analysis and at the
same time be expressive enough to enable the representation
of a wide range of systems. The model that we selected is a
revised version of the Stochastic Automata Network model
of Plateau [18].

A Stochastic Automata Network (SAN) S = (A ,E,⇒)
comprises a set of stochastic automata A = {A(1), ...,A(n)},
a global set of events E, and a relation ⇒⊆ E × E. A
stochastic automaton is a tuple A(i)(S(i),T (i),L(i),G(i)) where
S(i) is a set of states, T (i) ⊆ S(i)×S(i) is a set of transitions,
L(i) : T (i)→ 2E is a labelling function that associates a set of
events to each transition. The set of possible system states
(not necessarily all reachable) is S = ×n

i=1S(i). Let Π(S)
be the set of all partitions of S and let Λ = ∪P∈Π(S)[P→
Q+∪P ∪{>}] be the set of all functions from partitions to
the union of the positive rationals, a set of parameters P ,
and a special symbol > which denotes any rate. The guard
function G(i) : T (i)→ Λ associates to each transition a state
dependent rate.

The relation among events ⇒ (reflexive, antisymmetric
and intransitive) imposes restrictions on the set of possi-
ble behaviors of the SAN. If (e1,e2) ∈⇒ we also write
e1 ⇒ e2 and we say that e1 implies e2, or e2 is implied
by e1. To define the semantics of a SAN, we first define
its language, i.e. the set of possible computation paths. A

computation path is a sequence of states and transition times
π = (s0,τ0,s1,τ1, ..) ∈ (S×R+)

ω . Such path is valid if it
satisfies the following set of conditions expressed in terms
of the state transitions ti = (si,si+1): 1) t(k)i ∈ T (k) where we
indicate with t(k)i the projection of ti on the states of the
k-th automaton, i.e. t(k)i = (s(k)i ,s(k)i+1); 2) G(k)(t(k)i )([si]) 6= 0,
where [si] is the partition containing si; 3) Either L(i)(t(k)i )= /0
or, ∀ e ∈ L(i)(t(k)i ), if e is implied by some e′ then there
must be a transition t( j)

i for some automaton A( j) such that
e′ ∈ L( j)(t( j)

i ). Time ti is the time spent in state si and
depends on the transition rate at si. The transition rate is not
straightforward to define. Consider two events in a relation
e1⇒ e2 and the two respective transitions t1(s

(k)
i ,s(k)i+1)∈ T (k)

and t2(s
( j)
i ,s( j)

i+1) ∈ T ( j). The rates of this transitions are
G(k)(t1)([si]) and G( j)(t2)([si]), respectively, which might be
different. During reachability analysis, the rate of the implied
transition will be constrained to be equal to the rate of t1 1.
For illustration purposes and to keep the exposition simple,
we will use binary guard functions. A binary guard function
maps a transition to a subset Λ′ ⊂Λ, where Λ′ only contains
mappings whose domains are the binary partitions of the
state space. Moreover, one element of the partition must
map to zero. We refer to binary guard functions as to guard
conditions.

The language of a SAN is the set of all valid computation
paths. It is easy to see that each computation path is the
realization of a Markov Process. In fact, a SAN can be
described by its underlying Continuous Time Markov Chain
(CTMC). For a characterization of the probability space
defined by a CTMC, please refer to [19]. The type of SAN
presented in this section provides the basic elements to cap-
ture complex synchronization patterns among the transitions
of the automata of the SAN. It will appear clear later that
this is important for the type of systems that we want to
describe.

B. Translation

The translation of the input specification into a SAN in-
volves the translation of the functional model, the translation
of the architectural model, and the implementation of the
binding constraints.

a) Translation of the functional specification: The main
challenge in this task is to represent the continuous time
dynamics of the plant into a SAN (for a detailed discussion
of the translation of the functional specification please refer
to [20]). The first obvious observation is that the behavior of
a SAN is a Markov process whereas this is not true in general
for the discretized dynamical system. To generate a SAN
abstraction of the dynamical system, we use a technique that
is well known from the dynamical system community [21].
This techniques consists in discretizing the continuous states
and generating a finite partition of the continuous state space.

1The reachability analysis algorithm (Section V-A) takes care of other
possible situations that may arise, such as an event implied by several input
events. Some models, however, might simply be rejected as inconsistent



However, it is only possible to guarantee that the state
distribution in the SAN converges to the one of the dynamical
system as the partition gets finer. However, little can be said
about the speed of convergence and the approximation error.
This finite abstraction is unfortunately necessary because
analysis techniques for Stochastic Hybrid Systems [13] are
still in their infancy.

The translation of the controller (represented by EFSMs)
does not present major technical challenges. However, when
the controller is described as a set of Stateflow charts in
the Simulink/Stateflow tool, then there are many semantic
issues that need to be addressed [22]. Most of these issues
are solved by simply restricting the type of models that can
be translated. This is necessary to keep the size of the model
bounded. From a practical implementation standpoint, the
main difficulty is in the translation of the guard conditions
that are present in the EFSMs. Each guard condition must be
translated into a guard condition for the SAN which requires
to identify the sub-set of states in which the guard evaluates
to true.

Moreover, the transition rates of the EFSMs are not
known as they depend on the performance of the underlying
hardware platform. Thus, the user has two options. If a
functional analysis needs to be carried out, then the rates can
be set to 0, if the guard conditions are not satisfied, while
transitions are considered “immediate” transitions when the
guard conditions are satisfied. If the function is going to be
bound to a hardware architecture, then the rates can be set
to 0 if the guard conditions are not satisfied, and > (i.e. to
be decided) when the guard conditions are satisfied.

b) Translation of the architectural specification: The
translation of the hardware and software architecture also
presents some difficulties. The main focus of architecture
description languages is to capture components, intercon-
nections, performance metrics and design alternatives. The
Architecture Analysis and Design Language (AADL) [11]
is one example of such formalisms. However, the behavior
of the architectural components is essential to enable the
evaluation of the performance of the overall system. Some
examples of interesting behavioral aspects are communica-
tion protocols as well as scheduling algorithms.

Consider the architectural model in Figure 1. A model of
one of the two processing elements is shown in Figure 3.
The model comprises two threads, a scheduler, and two I/O
buffers (one for transmitting, and one for receiving data).
The thread model is an automaton with three states: in the
sleep state the thread is inactive; in the ready state the thread
is ready to be executed, but needs to wait to get ownership
of the shared computational resource; in the run state the
thread is executed on the processing element. This model
is an abstraction of the thread model defined by the AADL
language (one of the few behavioral aspects included in the
standard). The scheduler implements a first-come-first-served
policy. We have labelled each transition with one event but
we have not shown guard conditions.

The thread activation policy determines when the tran-
sition from the sleep state to the ready state occurs. For

Fig. 3. Example of model of a processing element with two threads a
scheduler and I/O buffers.

example, a thread in the AADL language is associated with
a dispatch protocol property. A thread can be dispatched pe-
riodically, aperiodically, sporadically, or it can be dispatched
only once until completion. The transition from the ready
state to the run state is driven by the scheduler. The scheduler
decides which thread takes ownership of the processor. The
scheduler starts from the idle state and it can transition to
the le f t or right states to grant the exclusive use of the
processing element to the left or right thread, respectively.
Consider transition (idle,right). This transition is only taken
when the right thread is ready to run, which correspond to
the set of system states Srr = {s ∈ S|s(2) = ready}. Thus
G(3)(idle,right)(¬Srr) = 0 while G(3)(idle,right)(Srr) corre-
sponds to the overhead associated with loading the context of
the new thread to be executed. When the transition is taken,
the thread must move to the run state, thus e(3)i2r ⇒ e(2)r2r. The
thread can now be executed. When the execution is over,
the thread transitions back to the sleep state and releases
the resource, i.e. e(2)r22⇒ e(3)r2i . Guard conditions and synchro-
nizations are similarly defined for the left thread. The I/O
buffers are one place buffers directly used by the application
software while in the run state. In this example we showed a
first-come-first-served scheduler, but other schedulers can be
modeled. Also notice that performance metrics are captured
by exponentially distributed transitions. This is not realistic
in general and there are techniques to deal with this problem
such as the use of phase-type distributions [23], or the
solution of the underlying Markov Regenerative Process [24].

Figure 4 shows the model of a communication protocol
that allows to transfer data between the I/O buffers of
two threads. The protocol model is not so different from
the scheduler of Figure 3. In fact, it manages access to a
communication medium (the shared resource) from multiple
sources. The scheduling policy implemented by the protocol
is token-ring. The initial state is le f t meaning that the left
I/O TX buffer is checked first. If it is empty, then the protocol
passes to check the right buffer. If the left buffer is full, then
it is served by moving the message to the right receiving
buffer. This is achieved by two synchronizations as follows:



Fig. 4. Example of model of I/O buffers and a communication protocol.

Fig. 5. Example of mapping of a guarded transition on processing element.

e(8)sl ⇒ e(4)f 2e and eld(8) ⇒ e(7)e2 f . While the model seems
intuitive, the difficulty lies in the potentially large set of
implementation options associated with this simple transfer.
To mention a couple, we have assumed that the routing
of messages is statically defined. This allows to solve the
transfer of messages among queues using synchronizations
only. As a matter of fact, we are not even defining messages.
The definition of message types in the architecture is only
used to determine the average transfer delay associated
with the transition (l2r,right). Further, we have assumed
an overwriting policy for the buffers, i.e. the protocol does
not check whether the RX buffer is full before executing
transition (l2r,right).

C. Mapped model

Functional controllers are allocated to the available com-
putational resources in the architecture. The user specifies
the binding between EFSMs and threads, as well as other
architectural features such as I/O buffers. The automatic
generation of the mapped design includes a refinement of
the functional specification. Figure 5 shows an example of
refinement of a transition with guard condition G1 to be
executed on a thread. The single transition is refined into
a sequence of states which capture the main steps executed

by the code running inside the thread. This is not the
only possible refinement, but it is general enough to allow
the back-annotation of performance and the definition of
different task activation policies. When implementing a finite
state machine in software, transitions correspond to change
of states that can happen only when the thread implementing
the machine runs on a processing element. Thus, the first
synchronization to be included in the model is e(1)r2r ⇒ e1.
When the thread runs, the guard condition is checked. If
the guard condition is false, then the transition cannot be
executed; the sate machine stays in its current state s0 and
the thread goes back to sleep, i.e. e2 ⇒ e(1)r2s. If the guard
condition is satisfied, then the transition can be executed.
The change of state might have to be communicated to the
rest of the system (especially in distributed architectures).
In this case, the new state is written in the output buffer
using synchronization e3⇒ e(4)e2 f . The thread waits until the

transmission is over, i.e. e(4)f 2e ⇒ e4, and then goes back to

sleep, i.e. e4⇒ e(1)r2s.
In refining the functional specification, the new transitions

need to be associated with transition rates (more generally,
with transition time distributions). This task, called perfor-
mance annotation, is complex because it requires taking into
account the properties of architectural components (e.g. the
processor type) and the content of the functional model (i.e.
the complexity of the operation executed by the software).
For example, the rate of transition (s0r,s0) correspond to
the time required to evaluate the guard condition, and the
rate of transition (s0r,s0x) corresponds to the time required
to evaluate the guard condition plus the time required to
compute the new state. Thus, these lengths of time depend
on the actual running time of the functional code on the
selected processor, including the effect of other architectural
features such as cache memory, pipeline etc.

This is only one example of the possible patterns that a
translator needs to be able to generate. Unfortunately, the
number of architectural components and ways of implement-
ing a network of automata on a distributed architecture is
large, and consequently the translation task becomes difficult,
often requiring the use of other external tools to compute
functionality and data dependent performance metrics (such
as worst case execution time). For example, we have shown
an implementation style where each automaton broadcasts
its new state at the end of a transition. This implementation
style may work in some cases. In other cases, communication
is implemented by unicast messages only to those automata
that are affected by the state change. Further, explicit ac-
knowledgements might be required for robustness.

V. BACK-END DEVELOPMENT AND CHALLENGES

After processing the input specification, the generated
model, in the form of an integrated SAN, must be analyzed.
Analysis is broken down into two steps: reachability analysis
and solution of the underlying Markov Chain.



A. Reachability analysis

The set of states that can be reached by a network of
automata can be computed using either explicit or symbolic
reachability analysis. Explicit reachability analysis starts
from the initial state of the system and uses either a Breath
First Search or a Depth First Search algorithm to explore the
set of reachable states. Symbolic reachability analysis [25]
uses an implicit representation of sets of states and transitions
as Boolean functions. These Boolean functions can be effi-
ciently represented using Reduced Ordered Binary Decision
Diagrams [14] (ROBDD). The use of this technique requires
encoding the transition function of the input model (i.e. the
SAN in our case) into a ROBDD that can be then used
in a standard fixed point algorithm to compute the set of
reachable states [25]. However, the model encoding is chal-
lenging because of the type of automata network supporting
the SAN model. The two main technical difficulties arise
from the state dependent nature of the rates associated with
transitions, and the complex synchronizations captured by
relation ⇒.

Fig. 6. Synchronization graph summarizing the chain of interactions in
the example SAN presented in this paper.

A detailed description of the encoding of a SAN into
a BDD is out of the scope of this paper. We will only
discuss a few details that capture the complexity of the
problem. Figure 6a) shows a graph-based representation of
the synchronization relation for the example explained in
this paper. For the sake of this discussion, let us restrict the
transition labeling functions to the case where events are
uniquely associated to transitions2. Events in the synchro-
nization graph can then be replaced by the corresponding
transitions as in Figure 6b). Figure 6c) shows the guard
conditions associated with each transition.

The synchronization graph can be decomposed in a set
of disjoint connected components. Some events are input

2We do not include bidirectional synchronizations just because they are
captured by assignment of the same event to different transitions. However,
in the construction of the transition function, bidirectional synchronizations
must be treated separately and included in the synchronization graph as
special type of arcs.

nodes, meaning that they are not implied by any other event,
and some events are output nodes, meaning that they do
not imply any other event. Further, some event my imply
multiple events, and some may be implied by multiple events.
For instance, event e(1)r2s is implied by e2 and e4. For this type
of event we use an OR semantics, meaning that if e(1)r2s occurs,
then e2 or e4 must have occurred. In some cases, determining
the rate of a transition does not present any challenge.
For example, transition (le f t, idle)(3) inherits the rate of
transition (ready,sleep)(1). In other cases, determining the
rate is more involved. For example, the rate of transition
(ready,sleep)(1) depends on the event that triggers it, and it
can be either λG or λd . If λG 6= λd and the two transitions are
both enabled, then the rate of (ready,sleep)(1) is not defined
(unless a specific rule of composition is provided such as the
product λG ·λd).

To be able to perform symbolic reachability analysis, the
transition function of the combined system needs to be en-
coded into a ROBDD. We encode each transition as follows.
First, for each rate defined in the system, we introduce a
new symbol γi ∈ Γ, and we keep a map Γ→ Q+ ∪P ∪>.
A transition is encoded as a string of binary variables:

x(1)1 y(1)1 . . .x(1)b1
y(1)b1

. . .x(n)1 y(n)1 . . .x(n)bn
y(n)bn

g1 . . .gbγ

where the string x(i)i . . .x(i)bi
encodes the current state of au-

tomaton A(i), and bi is the number of bits required to encode
all its states. Also, y(i)i . . .y(i)bi

encodes the next state after the
transition is executed. Finally, g1 . . .gbγ

encodes the guard
condition associated with the transition. The disjunction of
all possible transitions compatible with the semantics of the
SAN is the transition function.

B. Computing performance metrics

The result of the symbolic reachability analysis algorithm
is a ROBDD containing the set of reachable states. In our
implementation we keep also the ROBDD that encodes
the set of firable transitions, thereby keeping a symbolic
representation of the rate matrix of the underlying Markov
Chain. A traversal of the ROBDD generates the rate matrix
of the Markov chain where some of the entries are rational
numbers and some are elements of P . Before transient
analysis, the user must provide a value for these parameters
in the form of a table associating each parameter to a rational
number. The user can also sweep parameters to generate
several results an manually explore the design space. The
transient analysis is based on standard techniques [2] and
uses sparse matrices.

However, there are two problems that the analysis engine
needs to deal with. First, the state space is large and
it is in general not possible to keep the entire result in
memory. During analysis, partial results must be dumped
on disk and the solution must start over by using the last
probability distribution computed at time t as the new initial
conditions for the system. Most importantly, the state space
is now unstructured. The input specification has lot more
information due to the fact that the state space is structurally



Fig. 7. High level diagram of the model of the autonomous mission.

partitioned among the different automata. This information
is hidden once the system is represented by a single Markov
Chain. The user can define filters to project the state space
over a few meaningful traces. For example, suppose the user
is interested in looking at the probability that A(1) and A(2)

are running. The analysis engine creates a matrix M that
projects the probability vector of the entire system onto those
two states. This matrix will have two rows and as many
columns as π (i.e. the size of the state space). Element
M(1, i) is equal to one if s(1)i = run, and it is zero otherwise.
Only the projected space needs to be stored and presented
to the user. Filters can be in general complex including
the conjunction or disjunction of states. In general, a link
between the underlying CTMC and the original system must
be kept.

VI. EXAMPLES OF APPLICATIONS

In this section we show a functional analysis and an
architectural analysis. The architectural analysis shows some
metrics computed starting from the model presented in this
section. The purpose of this section is to show the versatility
of the tool rather than inferring properties about the systems
being analyzed.

A. Example of functional analysis

Consider an autonomous helicopter which is assigned the
mission of finding a building marked with a special symbol
in a urban area. Since the vision algorithm used to match the
symbol against a known pattern is sensitive to scaling, the
position estimation error (caused by the finite accuracy of
the GPS and other sensors) can cause either a false negative
(i.e. the symbol is missed), or a false positive (i.e. an object
is recognized as the symbol). Each object with a minimum
level of matching is kept in a table with an associated score.
At each frame the score is updated depending on the quality
of the matching. We discretized the score into three levels:
good (g), average (a) and bad (b). We assume that there are
four objects randomly placed in the scene and that object 0
is the symbol.

The model is shown in Figure 73 and has two parts. The
trajectory followed by the helicopter is computed by a tra-
jectory generation algorithm for given way-points around the
building. A camera model is used to generate Boolean flags
that are equal to TRUE if the corresponding object is in the
field of view of the camera and FALSE otherwise (Field

3A more detailed Simulink/Stateflow model can be found in [20]

(λ ,σ) Score 0 1 2 3
g 0.620735 0.025383 0.010964 0.024086

(0.5,0.21) a 0.184631 0.182338 0.179239 0.18054
b 0.194634 0.792279 0.809797 0.795374
g 0.556104 0.047224 0.038085 0.045598

(1,0.42) a 0.382108 0.374072 0.380567 0.373811
b 0.061787 0.578703 0.581347 0.580591
g 0.407133 0.142445 0.140132 0.142345

(10,0.84) a 0.453272 0.452727 0.452559 0.452914
b 0.139595 0.404828 0.407309 0.404741

TABLE I
PROBABILITIES OF GOOD, AVERAGE AND BAD MATCHING FOR

DIFFERENT VALUES OF ERROR VARIANCE AND COMPUTATION SPEED.

of view model). The vision algorithm is a finite state
model that maintains a matching score for each of the objects
in the scene (the object being parallel states). When in the
field of view, the score assigned to object 0 increases if the
position error is below a lower bound l, and decreases if it
is above an upper bound u (transitions are reversed for the
other objects). Because the update is done at each frame,
higher computation rates improve the ability to distinguish
image features. The system is translated into a SAN, where
the variance σ of the colored noise e is one of the parameters.
The transition rate λ associated with transitions in the vision
algorithm model is another parameter. These two parameters
represent the accuracy of the sensors and the speed of
execution (i.e. frames per second) of the vision algorithm,
respectively.

The helicopter follows a circular trajectory around the
building. We report the values of the probability of being
in each of the three level of the matching score for all the
objects in Table I.

B. Example of architectural analysis

We consider a distributed architecture composed of pro-
cessors running a single thread and communicating over a
token ring bus. This architecture is built using the templates
presented in Section IV-B. Each thread thi transitions from
the sleep state to the ready state when the transmission buffer
T Xi is empty. When the thread is scheduled to run, it first
reads from buffer RXi, and then writes to T Xi. The token ring
bus serves the TX buffers and broadcasts their content to all
RX buffers in the system. We consider transition rates of
105, 104 and 103 for transitions (sleep,ready), (ready,run)
and (run,sleep) respectively. We also consider a rate of
8000 for the protocol to pass the token among users, while
we leave the data transmission rate λ as a parameter (to
mimic the effect of different packet sizes). We consider
three architectures: sys2 with two processors (182 reachable
states), sys4 with four processors (24708 reachable states)
and sys4 f with 4 unreliable processors (2118680 reachable
states). Unreliable processors can fail with rate 0.0003, and
recover from failure with rate 0.3. The results of the analysis
are shown in Table II where we report the probability of
being in the sleep, ready or run state for thread th2 at time
t = 1ms.



λ System P(sleep) P(ready) P(run)
sys2 0.275 0.058 0.666

8000 sys4 0.380 0.038 0.581
sys4 f 0.371 0.038 0.591
sys2 0.378 0.040 0.581

4000 sys4 0.453 0.025 0.522
sys4 f 0.439 0.025 0.535
sys2 0.459 0.026 0.515

2000 sys4 0.505 0.016 0.479
sys4 f 0.489 0.016 0.495

TABLE II
PROBABILITIES OF BEING IN THE SLEEP, READY OR RUN STATE AT

t = 1ms FOR THREAD th2 .

The results show two obvious trends. When the number
of processors increases, the token rotation time increases and
the time a task spends in the sleep state also increases. If the
transmission time increases, the time spent in the sleep state
also increases. Interestingly, the time spent in the run state is
higher for sys4 f than for sys4. This is because thread th2 can
leverage the time when other processors are silent because
of a failure.

VII. CONCLUSIONS

The design and analysis of cyber-physical systems requires
the ability to deal with uncertainty. While many tools exist,
the development of an integrated framework for analysis
and design of uncertain systems exposes challenges that
include model extraction from heterogeneous specification,
parametric analysis to enable design space exploration, fast
computation over large Markov models, and presentation of
meaningful results to designers.

We have presented a tool that is under development at
the United Technologies Research Center and that addresses
the integration of stochastic analysis techniques into standard
design flows. The tool is divided into a front-end that
performs the model extraction from high level languages,
and a back-end that implements analysis techniques on
SAN models. On the one hand, this separation allows to
make the analysis independent from the specific application
and modeling language. On the other hand, much of the
complexity of the analysis can be reduced by an appropriate
modeling strategy, which suggests a tight integration of the
front-end and the back-end.

Our future work includes the ability to deal with Stochastic
Hybrid Systems, and the implementation of automatic design
space exploration tools.
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