
A Model-Based End-to-End Toolchain for the

Probabilistic Analysis of Complex Systems

Alessandro Pinto

United Technologies Research

Center Inc.

Berkeley, CA

pintoa@utrc.utc.com

Sudha Krishnamurthy

United Technologies Research

Center

East Hartford, CT

krishnadots@gmail.com

Suresh Kannan

Dept. of Aerospace Engineering

Georgia Institute of Technology

Atlanta, GA, suresh.kannan@

aerospace.gatech.edu

Abstract— We present a model-based environment for the
probabilistic analysis of systems operating under uncertain
conditions. This uncertainty may result from either the en-
vironments in which they operate or the platforms on which
they execute. Available probabilistic analysis methods require
to capture the system specification using languages that are se-
mantically very close to Markov Chains. However, designers use
model-based environments working at much higher abstraction
levels. We present an integrated tool, called StoNES (Stochastic
analysis of Networked Embedded Systems), that automates the
model transformation and probabilistic analysis of systems. We
apply our translation and analysis methodology to explore the
trade-off between sensor accuracy and computational speed for
the vision algorithm of an autonomous helicopter system.

I. INTRODUCTION

Model-based design is an important paradigm in the

development of safety-critical embedded systems. The main

principle of the paradigm is to use models all along the

development cycle, from design to implementation. Model-

based design enables the use of tools for analysis, simulation,

verification, synthesis, and code generation. Our objective is

the analysis of embedded systems that operate in uncertain

environments. This uncertainty may arise from different

factors, such as the environmental conditions and the perfor-

mance of the platforms on which they execute. Consider, for

example, an autonomous helicopter. Its dynamics is affected

by wind that is uncertain; the estimate of its position is

affected by sensor inaccuracies; the execution times of the

image processing algorithms used in autonomous missions

are data dependent, and since data values are not known a

priori, the execution time is uncertain; and finally, hardware

components may fail with a certain probability. It is essential

for designers to be able to assess the performance of the

entire system early in the design. The interesting question

to be answered is the following: what is the probability that

a mission can be accomplished autonomously, under such

uncertain conditions? For such systems, a design-and-test

approach is inadequate, because it is not possible to run tests

in any randomly selected scenario.

Ideally, a designer would capture the system in a high level

language, by including all sources of uncertainty, and would

then rely on a push-button solution to explore the impact of

design choices on the mission success probability. Matlab

Simulink and Stateflow (MSS) are often the languages of

choice, especially in many safety-critical application domains

Continuous
Time

Stateflow
Charts

Simulink/Stateflow Model

Finite sate
abstraction

SF2SAN
ct.txt

EM; I Sc

san.xml
Reachability
MC analysis

Analysis
parameters

Results

MC
Simulation

Validation

trace.mat

M
od

el
T

ra
n
sl

at
e

A
n
al

y
ze

Fig. 1. Overview of the StoNES front-end tool.

such as avionics and automotive. However, while the MSS

models are primarily used for simulation, there is little

support for formal verification and virtually no support for

stochastic analysis. One possibility would be to use Monte

Carlo simulations. However, the complexity of this type of

analysis depends on the number of uncertain parameters in

the system and on their distributions. On the other hand,

when the models can be reduced to Markov Chain (MC)

based formalisms, such as Stochastic Petri Nets (SPN) [1]

or Stochastic Automata Networks (SAN) [2], analytical

methods exist to compute the probability distribution over

the states of the underlying MC. While the complexity of

the analytical methods depends on the number of states of

the MC and suffer from the state explosion problem, the

advantage is that the result covers all possible behaviors

of the system, and is exact within the assumptions of the

model. Manual development of probabilistic models requires

a considerable amount of time and is also error prone. Thus,

there is need for a methodology and a companion tool that

can bridge this gap by automatically generating models that

are amenable to probabilistic analysis starting from a high-

level specification of real systems, and providing a flexible

back-end tool for analysis and design space exploration.

We have developed a tool-chain, called StoNES, with the

objective of automating the stochastic analysis and design

of networked embedded systems, starting from their high-

level specification. StoNES has three key modules: a func-

https://www.researchgate.net/publication/220653845_Modeling_with_Generalized_Stochastic_Petri_Nets?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/3187414_Stochastic_automata_network_of_modeling_parallel_systems?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==

tional translator that generates a probabilistic description

from a high-level functional model of the system given in

Simulink/Stateflow; an architectural translator that translates

the hardware architecture of the system given in AADL [3]

into a probabilistic model; and a mapper that generates a

probabilistic model of the system by integrating the func-

tional and architectural models for a given mapping of the

functional units on architectural components. The probabilis-

tic model generated by the front-end is used for analysis

by the back-end. In this paper, we primarily focus on the

translation and analysis of the functional model (Figure I).

We illustrate the use of StoNES through a case study that

consists of the probabilistic analysis of the success of an

autonomous helicopter tasked with the mission of searching

for and identifying a specific symbolic pattern within a group

of buildings. We also validate our tool by showing that

the results from analyzing the high-level functional model

using Monte-Carlo simulation are consistent with the results

obtained from analyzing the translated SAN model using

probabilistic techniques.

The remainder of the paper is organized as follows. In

Section II, we describe the methodology, including the input

and output models of the translation process. In Section III,

we describe the translation algorithms. In Section IV, we

illustrate the use of our methodology on an autonomous he-

licopter mission and present results that show the equivalence

between the probabilistic model output by the translator and

the original functional model. We review related work in

Section V and then present our conclusions in Section VI.

II. THE STONES METHODOLOGY

The functional analysis flow implemented in StoNES is

shown in Figure I. The functional specification of a system

is input to the StoNES framework in the form of a Simulink

diagram that contains a model of the plant to be controlled

(e.g. the set of differential equations describing the flight

dynamics of a helicopter), sensors and actuators (Continuous

Time Figure I), and state machines implementing high level

control strategies. The state machines are captured using

Stateflow charts. Thus, the specification is in general, a

hybrid system. The translation process generates a SAN

model, which is then input to the analysis engine. Let E be

the set of Simulink signals, I the set of integrator variables

(i.e. the continuous states of the system), and Sc be the

combined state of all Stateflow charts. We consider two

sources of uncertainty: 1) a set of parameters P of the

Simulink blocks can be considered random variables, and

2) some of the signals M ⊆ E can be driven by Markovian

processes.

A. Inputs to the SF2SAN translator

The continuous time part of the MSS model may be used,

among other purposes, to capture the environment in which

the control system operates. In our methodology this part of

the model is abstracted into a finite state system that can be

analyzed using our analysis engine. The finite abstraction can

be built using different methods. One abstraction technique

that is also amenable to automation consists in discretizing

the variables in I (we assume that the set of signal Ecs ⊆ E

directed from the Simulink blocks to the Stateflow charts are

directly dependent on the variables in I). Each discrete set of

values is associated with one state of a finite state system. For

each possible value of the set of signals Esc⊆E directed from

the Stateflow charts to the Simulink blocks, we compute the

probability of transitioning to other states using Monte Carlo

simulations (by sampling the parameters P). Thus, the values

of the signals in Esc are translated into a guard condition for

the transition and the probabilities computed using Monte

Carlo simulations are used to compute the transition rates.

The result of this abstraction are saved in a format that is

compatible with the Stateflow syntax. Each discrete state is

assigned a name and a set of state actions that assign the

values to the variables in Ecs corresponding to the discrete

values of I in that state. Each transition is associated with

a guard condition expressed using the same syntax of a

guard condition in a Stateflow chart. The only addition is a

rate parameter that is the rate of an exponential distribution

representing the time spent in the source state. This file can

be easily parsed by the translator that can treat this model as

an additional Stateflow chart in the translation process. For

this reason, we will only describe the concrete syntax [4],

[5] and the translation of Stateflow charts. We assume the

reader if familiar with the syntax and semantics of Sataflow.

Let E[C]αc/αt the the label of a transition where E is a

trigger event, C is a guard condition , αc is the condition

action and αt is the transition action. αc and αt . We do not

translate function calls or history junctions. The state action

α(s) of a state s is a entry action and it is restricted to simple

assignments of outputs to constant values. Also, we do not

support condition actions in this first implementation of the

translator. Finally, we assume that the input stateflow model

has a finite number of states[6].

B. Output of the SF2SAN translator

A Stochastic Automata Network (SAN) N =
({A(i)}n,E,⇒) is a collection of Stochastic Automata, an

alphabet of events E, and a relation among events⇒⊂E×E.

A Stochastic Automaton is a tuple A(i) = (S(i),T (i),L(i),G(i))
where S(i) is the set of states, T (i) ⊆ S(i) × S(i) is the

set of transitions, L : T → 2E is a labelling function that

associates a set of events to each transition, G : T → 22S×R+

is a relation that associates with each transition a set of

guard-rate pairs, and S = S(1)× . . .×S(n).

In the StoNES toolkit, we represent the SAN definition in

XML format. In our XML schema, an automaton contains a

set of states and a set of transitions, and it is characterized

by an initial state and a name. SAN states and SAN tran-

sitions have a name and a numeric identifier as attributes.

In addition, a transition may have events and one or more

guards as its children. A guard is characterized by a name as

well as a rate, and has a guard expression as a child node.

In the case of a continuous time model, the rate denotes the

mean value of an exponential distribution representing the

transition time, whereas in case of a discrete time model, it

denotes the probability of making the transition. Associating

a rate with the guard allows to capture state dependent rates.

We use a Boolean expression to represent the set of states

of a guard.

A formal definition of the semantics of the model re-

quires some additional notation, therefore we give an in-

tuitive definition. A stochastic automata network in state

si = (s
(1)
i , . . . ,s

(n)
i) can transition to state s j = (s

(1)
j , . . . ,s

(n)
j)

if and only if (s
(k)
i ,s

(k)
i) ∈ T (k) 1, all guard conditions

associated with the transitions are satisfied and all event

synchronizations are satisfied. There are two types of event

synchronizations: if two transitions t1 and t2 are labeled with

the same event, then they must occur concurrently. Second,

if ti is labeled with event ei, i = 1,2, and e1 is synchronized

with e2 (denoted as e1 ⇒ e2), then if t1 is executed and

t2 is enabled, then t2 must also be executed. A transition

t(s
(k)
i ,s

(k)
j) is enabled if the automaton A(k) is in state s

(k)
i

and guard G(k)(t) is true.

A simulation trace of a MSS model is the timed trace

generated by the Simulink simulator for one realization of

the set of processes driving the signals in M and one value

of the set of parameters P. The state space S of the SAN

model generated by the SF2SAN translator is partitioned

as S = SI ∪ SM ∪ S f , where SI is a finite abstraction of the

continuous states I, SM is the state space of the Markovian

processes and S f is a representation of the set Sc. Assume

the specificaiton only contains a set of Stateflow charts,

and that a formal description of its semantics was availalbe.

Given the semantics of the SAN model, it would be possible

to prove that our translation is correct (meaning that the

set of executions of the SAN model contains the set of

executions of the Stateflow model). However, there is no for-

mal semantics for MSS models released by the Mathworks.

Further, the discretization technique used for the Simulink

part is only approximate. Thus, we rely on probabilistic

conformance testing, We measure the approximation error

|P(sc(t) = s)−P(s f (t) = s)| for all states s∈ Sc. We compute

P(sc(t) = s) by using a Monte Carlo method, while we

compute P(s f (t) = s) using our analysis engine.

C. Analysis of a SAN model

The SAN obtained as output of the translation process is

the input to the analysis engine. We now briefly describe the

steps involved in analyzing a SAN.

The first step of the analysis is the computation of the

set of reachable states of the model. We use symbolic

reachability analysis [7] that has been implemented using the

CUDD package [8], [9]. We encode the states, the transitions

and the guard conditions enabled for each transition as bi-

nary variables. Since SAN support complex synchronization

relations among events, the transition function is partitioned

into the transition set generated by the free transitions

(i.e. the ones that are not subject to any synchronization

constraints), and the set generated by the synchronization

1Depending on the model of concurrency, we may have also self transi-

tions that are always enabled, i.e. s
(k)
i = s

(k)
i).

relation. As a result, StoNES generates a reachability graph

representing the underlying Markov Chain (MC), where

transitions are labeled with symbols. The symbols can be

numbers if transition rates are already known at translation

time, or parameters that can be substituted with numbers

during transient analysis. For example, the transition rates

of a Stateflow chart are not known to the translator. Thus,

the translator uses a symbol to denote the rate. This rate is

either assigned later by the user using a parameter file, or it

is inherited during mapping of the chart on computational

resources. When a chart is executed on a processor, the

execution time of the chart on the processor becomes the

transitions rate.

The transient analysis step solves the underlying MC by

first substituting the parameter values given as input by

the user. After the substitution step, we obtain the classical

Kolmogorov equation π̇ = QT π where Q(i, j) is the transition

rate from state i to state j of the MC. This equation can

be solved using numerical integration or the uniformization

method [10]. The user can define filters to project the result

of the integration along particular views. A view is a linear

projection of the state space of the MC and it can be defined

in terms of the state of the original MSS model in a separate

file.

III. SF2SAN TRANSLATOR

The SF2SAN translator generates a SAN model from the

input MSS model of the system. The concrete output of the

translator is represented using XML A SAN system node

is the topmost object in the SAN hierarchy, representing

the root of the document tree. Each chart in the MSS

model is then appended to the system as a new automaton.

Connections between charts are then represented by guard

conditions and event synchronization statements.

Algorithm 1: transformParallelStates

Input: StateflowState s (AND state)

S(1), . . . ,S(n) sets of states of the children of s;1

Define the new set of children of s to be2

S = S(1)× . . .×S(n) ;

Set the initial state to be (s
(1)
0 , . . . ,s

(n)
0) where s

(i)
0 is the3

initial state of the i-th child ;

foreach s1 = (s
(1)
1 , . . . ,s

(n)
1) ∈ S do4

α(s1) = α(s
(1)
1)∪ . . .∪α(s

(n)
1) ;5

end6

foreach s1 = (s
(1)
1 , . . . ,s

(n)
1),s2 = (s

(1)
2 , . . . ,s

(n)
2) ∈ S do7

if ∀ k = 1 . . .n, ∃ a transition between s
(k)
1 and s

(k)
28

then

add transition (s1,s2);9

guard G(s1,s2) = G(s
(1)
1 ,s

(1)
2)∧ . . .∧G(s

(n)
1 ,s

(n)
2);10

end11

end12

The SAN syntax does not support hierarchy. If a chart con-

tains AND (parallel) states, the translator uses Algorithm 1

https://www.researchgate.net/publication/3223670_Symbolic_Model_Checking_for_Sequential_Circuit_Verification?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/2623880_CUDD_CU_Decision_Diagram_Package_Release_220?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==

to reduce an AND state to a hierarchical state containing

only OR states. The algorithm computes the synchronous

product of the state machines that are children of the AND

state s. This algorithm is applied recursively until no more

AND states exist. The result is a Stateflow chart that contains

only OR states, but that is still hierarchical. To remove a

hierarchical state s, each incoming transition is connected

to the initial state of the contained state diagram, and each

outgoing transition is replicated from each child state to the

destination state. The result of this second transformation is

a flat Stateflow chart consisting only of OR states.

Translation of states. Each state of the flat Stateflow chart is

translated into one state of the SAN automaton representing

the chart. The state actions are parsed and stored in a data

structure, ActionList to be used during the translation

of transitions. Also, a map ms is constructed so that for a

Stateflow state s, ms(s) is the corresponding SAN state.

Translation of Transitions. An outgoing transition of a state

in a Stateflow chart is translated to a SAN transition and

added to the automaton being translated. Events and guard

conditions from the Stateflow transition are added to the

SAN transition element. Algorithm 2 shows the translation

steps. First, the Stateflow transition is mapped back to the

corresponding pair of states of the current automaton A.

The new transition is added to the set of transitions A.T of

automaton A. Then, the transition label is parsed to obtain the

event ev, guard expression C, transition action αt , and rate

λ of the transition. The rate λ is a number if it is explicitly

specified in the label or, as in the case of Stateflow charts,

is a symbolic parameter that will have to be assigned later

during the analysis step.

Algorithm 2: transformTransition

Input: Stateflow state s, current automaton A

foreach t(s,s′) outgoing s do1

ta← (ms(s),ms(s
′)) ;2

A.T ← A.T ∪{ta} ;3

(ev,C,αt ,λ)← parseLabel(t) ;4

A.L(ta)← A.L(ta)∪ ev∪αt ;5

add ev and αt to the global list of events ;6

exp← Exp(C);7

A.G(ta)← A.G(ta)∪{(exp,λ)}8

end9

An event that triggers a transition in a Stateflow chart is

mapped to a SAN event and associated with the transition.

The event is also added to a global list of events, which is

used to generate the pairs of events that are synchronized in

the SAN, as explained later in this section.

The transition action, if specified in the transition label,

signifies actions that are triggered after the transition is

executed. We currently assume that all transition actions

signify event broadcasts. Hence, an event that is triggered

as a result of a transition action in a Stateflow chart is

also translated to an event in the SAN, associated with

the transition and added to the global list of transaction

actions, which is used to generate the pairs of events that

are synchronized.

Translation of Condition Expressions. The SF2SAN trans-

lator maps a Stateflow condition expression C to a SAN

guard element G using Algorithm 3. If the transition label

in the Stateflow model does not have a condition expression,

the corresponding guard of the SAN transition is a simple

TRUE expression.

Algorithm 3: Exp

Input: Stateflow guard condition C

if C is a simple expression then1

S← findGuardStates(C);2

return createSANExprElement(S);3

end4

if C = C1bop1 . . .bopn−1Cn then5

return Exp(C1) bop1 . . .bopn−1 Exp(Cn) ;6

end7

If C is a simple expression, i.e. C = [x op a], where x

is a variable, a is a constant value, and op is a relational

operator (i.e. op ∈ {≥,≤,==,>,<, ! =}), then Algorithm 3

calls findGuardStates, which traverses the list of state

actions, Actionlist, to find the states in which C1 is true.

For example, if C = [x == 9], then findGuardStates

finds all the states in the which the variable x has a value of 9.

This is obtained by traversing the global list of state actions

that is populated when each state is created (as explained

earlier in this section). Note that variable x may be an input to

the current charts coming from a different automaton. Thus,

findGuardStates first obtains the mapping of variable

x to the variables in each automaton, using the input-output

connections in the MSS model. Then it determines if there

are any states in that automaton in which the condition C

is true. If A(1).s(1), . . ., A(k).s(k) are the states in which C is

true (A(i) being the automaton, and s(i) the state of automaton

A(i)), then the translator translates C to G = [A(1).s(1) ‖ . . . ‖
A(k).s(k)]. G is an expression tree in which the states form

the leaf nodes and the operators form the internal nodes.

If C is not a simple expression, then it is a compound

expression of the form C = [C1bop1 . . .bopn−1Cn], where

each Ci is a sub-expression, and bopi is a Boolean operator.

Algorithm 3 recursively translates each sub-expression, as

explained above, and computes the guard using the Boolean

operators bopi.

Event Synchronization. To determine the synchronization

relation⇒, the translator traverses the global list of transition

actions after all of the charts of the model have been

processed. For each event e1 in this list, it checks if there is

a matching event e2 in the global event list. Both of these

global lists are populated when transitions are translated. The

matching condition is satisfied if the broadcast of event e1

triggers event e2, where e1 and e2 may be events in different

automata. In such a case, e1 ⇒ e2, and the translator adds

the pair (e1,e2) to the relation ⇒.

IV. CASE STUDY - AUTONOMOUS HELICOPTER

APPLICATION

Consider an autonomous helicopter which is assigned the

mission of finding a building marked with a special symbol

in a urban area. In the early design stages of this system,

we need to explore the trade-off between sensor accuracy

and computation complexity in order to identify the building

with the required probability of success, as specified by the

mission. To understand this trade-off, consider the helicopter

flying around a building marked with a special symbol. Since

the vision algorithm used to match the symbol against a

known pattern is sensitive to scaling, the position estimation

error (caused by the finite accuracy of the GPS and other

sensors) has two effects: 1) the symbol may be missed even

if it is present in the current frame (false negative), and 2)

image features that are similar to the symbol may result in a

good matching (false positive). On the other hand, if several

frames are processed per second, the likelihood of discarding

similar symbols while retaining the real one is very high (at

the expense of carrying more weight on-board).

The model of the helicopter mission is shown in Figure 2

and has two parts. The trajectory followed by the helicopter

is computed by a trajectory generation algorithm for given

way-points around the building (Figure 2a)). The estimated

position is obtained by adding colored noise to the real

trajectory. We add colored noise because the white noise

from the sensor is filtered before being used by the vision

algorithm. Several objects are placed in the scene, but only

one of them corresponds to the symbol to be found. A camera

model is used to generate a Boolean flag that is equal to

TRUE if the object is in the field of view of the camera and

FALSE otherwise (Field of view model). The vision

algorithm is a Stateflow model (Figure 2b)) that maintains

a matching score for each of the objects in the scene (the

object being parallel states). If an object is in the field of

view, then its score is increased or decreased depending on

the error in the position estimate. In particular, if the error

is low, then the score associated with the symbol increases,

while the score associated with the other objects decreases.

If the error is high, the opposite occurs. We used three levels

for the score: good, average, and bad.

The system is translated into a SAN, where the variance

of the colored noise is one of the parameters. Similarly,

the transition rate associated with the Stateflow transitions

is a parameter (as explained in Section III). These two

parameters represent the accuracy of the sensors and the

speed of execution (i.e. frames per second) of the vision

algorithm, respectively.

Figure 3 shows the results of the analysis. Each row

corresponds to a different error level while each column

corresponds to a different rate of execution of the vision

algorithm (fps). In the first row, we observe that when the

processing speed is 10 fps, even if the object is in view for

only a short period of time, the probability of distinguishing

object 0 (i.e. high difference between probabilities of being in

the good rather than bad state) is very high. For a processing

speed of 0.5 fps, it is essential to have the object in view

for a longer time. In particular, if object 0 would have been

in view only for the first 10 seconds, it would have been

discarded. The situation is different when the error is large

(last row). In this case, increasing the controller speed at

Object State Monte Carlo StoNES

good 0.7908 0.8485
0 avg 0.2087 0.1506

bad 0.0005 0.0009

good 0.0005 0.0009
1 avg 0.2168 0.1577

bad 0.7827 0.8414

good 0.0004 0.0009
2 avg 0.2092 0.1517

bad 0.7904 0.8474

good 0.0005 0.0009
3 avg 0.2172 0.1570

bad 0.7824 0.8420

TABLE I

COMPARISON OF RESULTS OBTAINED THROUGH MONTE CARLO

SIMULATIONS AND STONES FOR σ = 0.21, AND COMPUTATIONAL

SPEED EQUAL TO 10 FPS (FOR THE STONES ANALYSIS)

which the vision algorithm is computed does not help. From

the results, we infer that a matching probability of 0.4 is a

limit for our input mission profile.

We notice that there is a trade-off between the accuracy

of the sensors and the computational complexity needed

to execute the vision algorithm for a given probability of

success. In fact, if σ = 0.21 and the object stays in view

for more than 40 seconds, then a computation rate of 0.5
fps would be sufficient to detect the symbol with high

probability. This means that the amount of hardware on board

(and the dissipated power) are limited in this case. However,

the sensor may be very costly. For σ = 0.84, the sensor

inaccuracy is very high and so the probability of success

would be very low. However, if a rate of 10 fps can be

achieved, then the results show that it would even be feasible

to use sensors with inaccuracy σ = 0.42, which may be less

expensive than highly accurate sensors.

Further, the results suggest that the response from the

vision algorithm could be used to regulate the speed at which

the helicopter flies, so that the same symbol remains in

the field of view for a higher number of frames. For in-

stance, when the difference between good and bad matching

probabilities is not high enough (say > 0.3), the helicopter

may slow down or even back up to take other frames from

the same field of view. However, if the mission must be

accomplished in a given time, it may not be possible to

always reduce the speed of the helicopter.

Table I shows the validation result obtained by run-

ning Monte Carlo simulations with over 25000 samples in

Simulink. We report the steady state probabilities obtained by

Monte Carlo simulations and by StoNES. In the simulations,

the transitions of the Stateflow model are instantaneous,

while in the SAN mode they are associated with a rate to

take into account architectural information. Thus, to compare

the analysis results, we set the frame rate to 10 fps, which

is high compared to the discretization step selected for the

continuous time model. For higher values of the probabilities,

the error is within 8%. However, the error is higher for

low probabilities. This is due to two factors: the accuracy

of the results obtained by Monte Carlo simulations, and the

(a) (b)

Fig. 2. Simulink/Stateflow model of the autonomous mission.

Fig. 3. Probability of a bad, average, and good matching of the symbol for different values of sensor accuracy and computational speed.

approximation of the continuous time part of the MSS model.

V. RELATED WORK

In this section, we present some of the related work in the

area of model-to-model translation and probabilistic analysis.

Semantic mapping between different design formalisms is

a common problem one often encounters in the design

of embedded systems and tools have been developed to

perform these mappings in an automated manner. In [11],

the authors present a semantic translator that makes use

of graph transformations to transform models expressed in

the Matlab Simulink and Stateflow (MSS) language into

equivalent models in Hybrid System Interchange Format

(HSIF), which is an XML based standard for representing

dynamic networks of hybrid automata. The hybrid automata

formalism is then used for model-checking. Instead of map-

ping to the hybrid automata formalism, the ss2lus tool-chain

translates Simulink/Stateflow models to the synchronous

dataflow programming language Lustre [12], [13]. Compilers

automatically generate code for different platforms from the

Lustre models and thereby automate the implementation of

embedded controllers.

In [14] the authors present a translator that maps an input

Simulink model to an equivalent NuSMV model, which is

an open source symbolic model checker. Model-checking is

also the goal of translation in the HiVy tool-set [15], which

maps each input statechart to an equivalent hierarchical

sequential automaton (HSA). A HSA consists of a finite set

of cooperating sequential automata. HiVy implements a HSA

as parallel processes in Promela, which is the input language

of the SPIN model checker. Thus, the input statechart,

translated into the HSA formalism, is then used as a basis

for model-checking and automatic code generation. While

the primary goal of a majority of the tool-chains described

above is model-checking and automatic code generation, the

goal of the translation in the StoNES toolkit is to produce a

semantically equivalent probabilistic model that is amenable

to stochastic analysis, from the functional and architectural

description of a system.

The two main approaches for the probabilistic analysis

of systems that are relevant to StoNES are transient anal-

ysis [1], which aims mainly at evaluating the performance

of a system, and probabilistic model checking [16], which

aims at checking that a CTMC, DTMC or MDP model

satisfies a formula expressed in the PCTL logic (and also

relies on transient analysis). StoNES leverages many of the

advancements in these fields to provide a flexible engine for

design space exploration.

VI. CONCLUSIONS AND FUTURE WORK

We presented a model-based toolchain for the probabilistic

analysis of systems that operate under uncertain conditions.

Given an input specification in a high level language such

as Simulink/Stateflow, the StoNES toolchain automatically

translates the specification into a (parametric) Stochastic

Automata Network (SAN). This model is then analyzed

in several steps that include reachability analysis, transient

analysis, and presentation of data. We showed how the tool

can be used for design space exploration and probabilistic

analysis by exploring the tradeoff between sensor accuracy

and computational needs for the mission of an autonomous

helicopter. The validation shows that the results obtained

from model-based probabilistic analysis and Monte Carlo

simulations are consistent, which in turn establishes the

semantic equivalence between the SAN model generated

by the StoNES translator and the input Simulink/Stateflow

model.

We plan to extend our work in multiple directions. The

SAN language has limited expressiveness that makes the

translation process complex. We plan to introduce a new

model that is more abstract than SAN, so as to balance the

effort between the translator and the model encoding into Bi-

nary Design Diagrams done by the analysis engine. We plan

to extend our analysis capabilities to avoid discretizing the

continuous time part of the system, because the discretization

algorithm has an exponential complexity in the number of

continuous variables.

REFERENCES

[1] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte,
Modelling with Generalized Stochastic Petri Nets. John Wiley &
Sons, Inc., 1994.

[2] B. Plateau and K. Atif, “Stochastic Automata Network of Model-
ing Parallel Systems,” IEEE Transactions on Software Engineering,
vol. 17, no. 10, pp. 1093–1108, 1991.

[3] S. Aerospace, Architecture Analysis and Design Language (AADL),
SAE, January 2009.

[4] Mathworks, “Simulink.” [Online]. Available:
http://www.mathworks.com/academia/student center/tutorials/simulink-
launchpad.html

[5] ——, “Stateflow.” [Online]. Available:
http://www.mathworks.com/access/helpdesk/help/toolbox/stateflow/

[6] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi,
“Defining and translating a ”safe” subset of simulink/stateflow into
lustre,” in EMSOFT ’04: Proceedings of the 4th ACM international

conference on Embedded software. New York, NY, USA: ACM,
2004, pp. 259–268.

[7] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill,
“Symbolic model checking for sequential circuit verification,” IEEE

Transactions on Computer Aided Design of Integrated Circuits and

Systems, vol. 13, no. 4, pp. 401–424, 1994.
[8] “http://vlsi.colorado.edu/ fabio/cudd/.”
[9] F. Somenzi, “Cudd: Cu decision diagram package release 2.2.0,” 1998.

[10] G. Bolch, S. Greiner, H. d. Meer, and K. S. Trivedi, Queueing

Networks and Markov Chains. Wiley-Interscience, 2005.
[11] A. Agrawal, G. Simon, and G. Karsai, “Semantic Translation of

Simulink/Stateflow models to Hybrid Automata Using Graph Trans-
formations,” Electronic Notes in Theoretical Computer Science, vol.
109, pp. 43–56, 2004.

[12] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi, “
Defining and Translating a ”Safe” Subset of Simulink/Stateflow into
Lustre,” Verimag Technical Report, Tech. Rep. TR-2004-16, 2004, this
is the full version of the paper accepted by EMSOFT04.

[13] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating Discrete-
Time Simulink to Lustre,” ACM Transactions on Embedded Comput-

ing Systems, vol. 4, no. 4, pp. 779–818, 2005.
[14] B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for Translating

Simulink Models into input Language of a Model Checker,” Lecture

Notes in Computer Science, 2006.
[15] P. Pingree and E. Mikk, “The HiVy Tool Set,” Lecture Notes in

Computer Science, pp. 466–469, 2004.
[16] D. A. Parker, “Implementation of symbolic model checking for prob-

abilistic systems,” Tech. Rep., 2002.

https://www.researchgate.net/publication/220653845_Modeling_with_Generalized_Stochastic_Petri_Nets?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220653845_Modeling_with_Generalized_Stochastic_Petri_Nets?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220653845_Modeling_with_Generalized_Stochastic_Petri_Nets?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220653845_Modeling_with_Generalized_Stochastic_Petri_Nets?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/3187414_Stochastic_automata_network_of_modeling_parallel_systems?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/3187414_Stochastic_automata_network_of_modeling_parallel_systems?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/3187414_Stochastic_automata_network_of_modeling_parallel_systems?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/222575308_Semantic_Translation_of_SimulinkStateflow_Models_to_Hybrid_Automata_Using_Graph_Transformations?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/222575308_Semantic_Translation_of_SimulinkStateflow_Models_to_Hybrid_Automata_Using_Graph_Transformations?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/222575308_Semantic_Translation_of_SimulinkStateflow_Models_to_Hybrid_Automata_Using_Graph_Transformations?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/222575308_Semantic_Translation_of_SimulinkStateflow_Models_to_Hybrid_Automata_Using_Graph_Transformations?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/222575308_Semantic_Translation_of_SimulinkStateflow_Models_to_Hybrid_Automata_Using_Graph_Transformations?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/3223670_Symbolic_Model_Checking_for_Sequential_Circuit_Verification?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/3223670_Symbolic_Model_Checking_for_Sequential_Circuit_Verification?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/3223670_Symbolic_Model_Checking_for_Sequential_Circuit_Verification?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/3223670_Symbolic_Model_Checking_for_Sequential_Circuit_Verification?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220094170_Translating_Discrete-Time_Simulink_to_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220094170_Translating_Discrete-Time_Simulink_to_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220094170_Translating_Discrete-Time_Simulink_to_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220094170_Translating_Discrete-Time_Simulink_to_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220744173_Tool_for_Translating_Simulink_Models_into_Input_Language_of_a_Model_Checker?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220744173_Tool_for_Translating_Simulink_Models_into_Input_Language_of_a_Model_Checker?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220744173_Tool_for_Translating_Simulink_Models_into_Input_Language_of_a_Model_Checker?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220744173_Tool_for_Translating_Simulink_Models_into_Input_Language_of_a_Model_Checker?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220800735_Defining_and_translating_a_safe_subset_of_SimulinkStateflow_into_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220800735_Defining_and_translating_a_safe_subset_of_SimulinkStateflow_into_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220800735_Defining_and_translating_a_safe_subset_of_SimulinkStateflow_into_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220800735_Defining_and_translating_a_safe_subset_of_SimulinkStateflow_into_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/220800735_Defining_and_translating_a_safe_subset_of_SimulinkStateflow_into_Lustre?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/243766397_Implementation_of_Symbolic_Model_Checking_for_Probabilistic_Systems?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/243766397_Implementation_of_Symbolic_Model_Checking_for_Probabilistic_Systems?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/243766397_Implementation_of_Symbolic_Model_Checking_for_Probabilistic_Systems?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==
https://www.researchgate.net/publication/2623880_CUDD_CU_Decision_Diagram_Package_Release_220?el=1_x_8&enrichId=rgreq-94eb0c53-e9db-4e74-bca0-c4c28c6154fa&enrichSource=Y292ZXJQYWdlOzIyMTE4OTQ3ODtBUzoxMDE1NjI2NTU0NDQ5OTJAMTQwMTIyNTgzMjM4Mw==

