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Abstract—Over the past few decades, remarkable progress has
been made in the the field of Artificial Intelligence (AI). For some
tasks such as games, natural language processing, and image
classification, AI powered applications can match or surpass
human performance. Despite this progress, truly Autonomous
and Intelligent Systems (AIS) serving the needs of, and sharing
the environment with humans, are yet to become a commercial
reality. AIS engineering requires considerable integration efforts
that must be disciplined and guided by a reference model
enabling reuse and concurrent design: an open and modular
architecture. While several specialized architectures have been
developed over the course of few decades, there is a need for a
unified approach that supports multi-agency, learning, knowledge
representation, reasoning, planning, and run-time verification. In
this paper, we propose an open and modular architecture for
autonomous and intelligent systems. We start by defining the
three primary modules of the architecture, namely situational
assessment, knowledge repository and management, and decision
making. We then refine each module into functional units and
we describe possible interaction patterns among them.

Index Terms—Autonomy, Intelligence, Architecture.

I. INTRODUCTION

The class of systems that we will be concerned with
have two key attributes: they are autonomous and intelligent.
Although there is no standard and agreed upon definition for
these attributes, we adopt a general one that should not appear
controversial to the reader, and that will be sufficiently detailed
to guide the development of architectural principles at the
right level of granularity. An intelligent system is capable
of extracting high-level knowledge from a variety of lower-
level data sources, and is able to generalize and store such
knowledge for future usage. An autonomous system is able to
make decisions without supervision in the pursuit of a goal.

Al, which has much to contribute to the development of
AIS, is a vast area of research and development that has
been growing remarkably fast. There is, today, a wide variety
of algorithms available to practitioners to solve specialized
tasks. Algorithmic development keeps moving forward in
all areas such as planning [1], perception, and learning [2],
[3]. However, engineering autonomous and intelligent systems
requires, among many other things [4], a disciplined guidance
to the integration of all such techniques in order to enable
reuse and concurrent design: an architecture.

The salient features of an architecture depend on the class
of applications it is intended to serve. In our case, we are
interested in applications where the operational environment

is not fully known at design time, and where the goals that can
be given to the system are open rather than a few. If both the
environment and the goals are known and well-characterized at
design time, then it is possible to pre-program a set of policies
that guarantees an optimal behavior. The system would not
need to have any intelligence, but would only need to step
through such designed-in policies at run-time. On the contrary,
if the environment cannot be fully characterized at deign time,
or the goals are wide open, then the system will need to
understand the external world on its own, and coordinate its
internal functions to find ways to achieve new goals as they
are requested by the user.

From the standpoint of an agent, the external world in-
cludes sensors, actuators, any other mechanical or hardware
components that are part of the system it controls, as well
as other agents which might be cooperative or adversarial.
Furthermore, the agent needs to know what it can do to
change the environment towards achieving a desired state.
Since the world is dynamic and not fully known, the agent
will need to have the ability to continuously assess the current
plans, and to deal with contingencies which will inevitably
occur. Thus, run-time analysis and verification is an essential
functionality of an autonomous and intelligent system. Finally,
there is a set of meta-decisions that need to be made in the
case of a contingency such as revising the goals, generating
alternative plans, or leveraging unexpected events to learn new
knowledge. Such complexity requires refining the architectural
view to a level where algorithms can be reused and integrated.

The architecture we present in this paper does not discuss
only the protocol of a generic multi-agent system. In fact, such
protocols exist today and we leverage previous work in this
area. We refine the agent level view by introducing the key
three modules of the architecture: situation assessment, knowl-
edge repository, and decision making. These three modules
represent a fairly standard decomposition of an autonomous
and intelligent agent. We refine this standard view by decom-
posing each module into key functions, or functional units. We
then show how such functions interact at run-time in typical
application scenarios. The architecture is open in the sense
that any composition of functional units cannot be “closed”,
thereby leaving no port of entry to interact with them. This
also means that the boundaries of an agent are established as
a convention to manage the complexity of a large system, or
to encapsulate functions into products, rather than as essential



delineation of domains of control. The architecture features
a virtual bus that is used to facilitate the interaction among
functional units. A virtual bus is also required since it is
not possible, in general, to fix the information flow between
functions.

The presentation of the proposed architecture will not rely
on a formal notation which we will use only in some cases
to explain some of the details of the interaction among
functional units. Some previous efforts have focused on formal
definitions and we include references to such previous work
throughout the paper. We will instead focus on the description
of the architectural principles. We also provide example of
possible execution traces of typical implementations, but each
embodiment of the architecture will have its own unique traces
depending on the the choices made by the designer. The
architecture does not place limitations on such interactions
but is rather a scaffolding to manage design and integration
challenges.

We review previous work in Section II. Section III presents
the architecture and its decomposition into functions, also
referred to as functional units. Section IV shows an example
inspired by a vehicle management system together with some
typical interaction traces. Finally, Section V offers some
concluding remarks.

II. PREVIOUS WORK

Architectures are essential in the organization of a design
process and to facilitate integration of capabilities as they
become available. Since the beginning of the development
of autonomous systems, researchers and engineers have felt
the need for a reference architecture, and many have emerged
over the years. Early approaches to autonomous and intelligent
systems proposed the use of a symbolic representation of the
world. In the 80s and 90s, the subsupmtion architecture [5], [6]
advocated for linking sensory information directly to actions
without the need for an explicit representation of the world.
In the early 90s, James Albus at NIST developed architecture
principles for intelligence [7] leading to the definition of the
4D-RCS architecture [8]. This architecture is close in spirit
to the one we present in this paper, and also inspired the
development of several others that have been specialized in
different domains. The architecture presented in [9] features a
hierarchical structure with a decision layer, an execution layer,
and a functional layers. The decision level includes planners
and plan supervisors which resembles some of the functions
in our decision making module. The CLARAty architecture
[10] is an evolution of the three layer approach that combines
the decision and the execution layers into one decision layer
directly interacting with the functional layer.

A number of other architectures can be found in literature,
developed for different purposes or for specific applications.
In the automotive domain, the DARPA Grand Challenge
showcased a range of vehicles whose hardware and software
architectures have been published in a special issue of the Jour-
nal of Field Robotics [11]. Although with some differences,
each architecture features an internal representation of the
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Fig. 1. High-level view of the architecture.

world, as well as domain specific planning systems. Cognitive
architectures such as SOAR [12] and ACT-R [13] are instead
inspired by theories of human cognition and have been used
both to simulate human performance and to build intelligent
systems. In common we these approaches, we share the need
for symbolic representations and for a mix of procedural
and declarative knowledge. Finally, we mention the classical
Belief-Desire-Intention model [14] which is also the model
adopted by the LORA [15] formal framework to reason about
rational agents.

III. PROPOSED ARCHITECTURE

The high-level diagram of a generic autonomy architecture
is shown in Figure 1. The situational assessment (SA) module
receives data from potentially many heterogeneous sources,
and interacts with the knowledge repository and maintenance
(KRM) module to estimate the current state of the envi-
ronment. The decision making (DM) module encapsulates
planning, plan execution and monitoring, plan verification, and
meta-decisions as described in Section I. Interactions among
these modules take place over a virtual bus which implements
a multi-agent interaction protocol.

The high-level view in Figure 1 is not effective in enabling
integration of components. In the area of autonomy and
artificial intelligence, these components are developed at a
lower level of granularity. In the next few sections we will
refine each module to arrive at the definition of a functional
architecture.

A. Knowledge Repository and Management

An intelligent agent acts accordingly to its understanding of
the world, its goals, its capabilities, and its values. All these
different kinds of information are stored in the KRM as shown
in Figure 2. The KRM is divided into a repository (on the left),
and a set of reasoning algorithms (on the right). The repository
is further decomposed into a domain specific repository of
objects, and a declarative repository for which the most critical
aspect is the knowledge representation language, which has an
impact on what can be expressed and reasoned about.

Several representations are available to capture knowledge
useful to an agent. Symbolic representations have been used
since the 70s (see [16] for a detailed review of knowledge
representation and reasoning methods). The knowledge mod-
eling effort for symbolic representations is nontrivial as shown
by the multi-decade project Cyc!. Reasoning methods for

Thttps://www.cyc.com/



symbolic representations tend to be complex and hard to scale
to large knowledge repositories. Other practical representations
have been developed over the years such as knowledge graphs?
and OWL? that have been used for large scale knowledge
acquisition primarily for the Web.

Another form of knowledge representation that has emerged
in recent years follows a connectionist approach and as been
made possible by innovations in the area of deep-learning [17].
In this cases, knowledge is represented by the architecture and
the numerical parameters of a network of simple computa-
tional units. It has been shown to be effective in many areas
including image classification and natural language processing.
In the case of reinforcement learning [18], this approach has
also been used to learn helicopter maneuvers [19], or to learn
how to plan games starting from just the observation of pixels
on a screen [20]. These representations can be very effective
but also have limitations since they require a large amount of
training data and are not interpretable by humans.

In recent years, there has been a renewed interest in sym-
bolic methods that have taken advantage of languages and
inference algorithms able to mix logic and uncertainty [21]-
[24]. These knowledge representation languages have been
used in many interesting applications such as detecting earth-
quakes [25], or autonomous scientific discovery [26].

Finally, there is still a large body of knowledge that is
captured in an imperative way using different programming
languages. This is common practice in all those cases where
the knowledge model is about a group of objects that are
known to exist, have well-characterized properties, and where
the queries to be answered by the knowledge base are few and
well-defined. For example, when designing an autopilot for a
fixed-wing aircraft, the model of the aircraft is known, and
the queries are fixed to the computation of the next dynamic
state given the previous state and the sensory inputs, and
the computation of the next actuator inputs. In other cases,
efficiency is a good reason to resort to domain specific knowl-
edge representation and algorithms. For example, reasoning
about objects like graphs and polytopes may become hard in
a symbolic setting, although there are cases in which efficient
decision procedures can be developed [27].

A declarative approach to knowledge representation offers
several advantages. The most evident is the separation of the
knowledge content from the reasoning algorithms. From a
development point of view, this separation enables reuse which
is critical to a fast development cycle. If knowledge is captured
in a declarative way, reasoning algorithms can be reused across
different domains because they are designed and implemented
to operate on any input that complies with the knowledge rep-
resentation language independently from the application. The
other advantage is that declarative representation languages
provide the expressive power to define abstractions that work
in a wide variety of actual environments. Finally, declarative
models can answer questions about the existence of a certain
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Fig. 2. Knowledge-repository and maintenance architecture.

concept that satisfies some constraints, whereas imperative
knowledge typically answers questions about properties of a
specific set of instances.

Each knowledge representation language, and associated
reasoning methods, have their own strength and weaknesses.
Multiple representations may have to be used to fulfill the
requirements and the constraints imposed on the design of
an agent. The KRM must organize the reasoning process of
such heterogeneous knowledge base while keep it consistent.
In many practical cases, this is done in an ad-hoc fashion,
but formal frameworks, such as the Nelson-Oppen approach
for combining decision procedures [28], could in principle be
leveraged to address this problem.

The knowledge repository also holds models that capture the
dynamics of the environment and the dynamics of the actions
that can be executed by the agent. Several declarative action
models have been developed over the years starting from
the STRIPS [29] representation, to the more expressive one
described in the Planning Domain Definition Language [30]
and its probabilistic extension [31], and to Hierarchical Task
Netoworks [32]. Together with these models, models of the
environment may require an explicit notion of time and are
needed to propagate the current state and evaluate the quality
of a plan.

B. Situational Assessment

The purpose of the situational assessment process is to
maintain an internal representation of the external world as
accurate and needed to make “good” decisions. The primary
goals are extraction of knowledge from data, and update and
revision of the belief stored in the KRM. The SA module
architecture is shown in Figure 3 and includes processing
data and identifying features, recognizing entities, assessing
the situation, and determining the impact by projecting the
evolution of the environment in the future. The architecture
takes inspiration from the JDL data fusion model [33], which
is based in turn on the Endsley’s model for situational aware-
ness [34]. An addition to the original model is a learning
function. Learning is about extracting knowledge from input
data, storing it, and being able to reuse it whenever needed.
We note that this function refers to the ability of the agent to
learn autonomously on-line which is different from a learning
function used off-line to train a model (which is then used on-
line). We include on-line learning in the SA module because

Zhttps://blog.google/products/search/introducing-knowledge- graph-things-not/ it extract models of the environment, thereby refining its
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knowledge to make it more precise and robust.
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Learning

The first few levels are typically domain specific. The signal
processing and feature extraction level depends both on the
nature of the incoming data, and on the knowledge extraction
goal, and is hard to generalize. Consider for example a simple
image classification task which consists in assigning pixels in
an image to object categories. Clearly, signal processing and
feature extraction depend on the selected sensor technology (a
camera in this case). Also, the selection of features in general
depends on the object categories of interest. The second level
uses these features to classify objects in the image. In the early
days of computer vision, feature engineering was a manual
task, and object classification was implemented as a network
of rules taking features as inputs. A breakthrough happened in
2012, when AlexNet [35] entered the ImageNet Large Scale
Visual Recognition Competition achieving results superior to
previous approaches. With a neural networks approach, a large
set of labeled images is used as training data to learn the
parameters of a network that solves both the feature selection
and the object classification problems. However, the resulting
model is still domain specific because it depends on the
selected input data set: a neural network that has been trained
to recognize characters from cameras, would not be capable
of recognizing people even with the same sensing technology.

Higher levels, such as situation and impact assessment,
require more advanced reasoning methods and are in many
cases domain independent (although they might be restricted to
reasoning about specific aspects of a situation such as physics).
Assessing a situation may also require reasoning beyond what
is known and stored in the knowledge repository. Relaxing the
closed-world assumption requires formalisms with open-world
semantics such as the one proposed in [21].

Impact assessment projects the current state into the future.
This function uses dynamic models of the environment and
of the capabilities of the agent that are stored in the KRM.
These models are essentially description of transition functions
that can, in some cases, be full-fledged simulators of certain
physical phenomena. As will be discussed also in Section
III-C, the impact assessment process requires instantiating a
secondary knowledge repository to propagate the state in the
future. The agent (either based on a policy computed at design
time, or based on context) will need to select the abstraction
level to conduct the assessment. The impact on the current
plans will be then assessed by the plan verification engine
that is part of the decision making module (see Section III-C).

The different levels should not be interpreted as a sequential
process. Each level receives inputs that consist, at least theoret-
ically, of a history of observations (e.g., a list of audio samples,
or features from a previous camera frame), and computes its

outputs (e.g., the uttered word, or the speed of an object). All
these outputs are stored in the knowledge repository so that
algorithms at any level have access to all of them. Finally,
information fusion is required to take into account features
and entities extracted from different data sources, as well as
the previous content of the knowledge repository. Computing
the new state of the world is a nontrivial task also known
as belief update and revision [36] which consists in finding
the changes to be made to the content of the knowledge
repository so that the addition of new knowledge does not
make it inconsistent. In most common applications, the content
of the KRM is probabilistic and a Bayesian approach is used
to keep it updated.

Finally, the learning function extracts knowledge that can
be stored in the knowledge repository and reused whenever
needed. We are mainly concerned with on-line unsupervised
learning which, at the moment of writing, is not deployed in
any practical system (especially in those cases such as driver-
less cars, or autonomous aircraft, where safety is a concern).
Enabling on-line learning imposes some requirements on other
functions such as the ability to store execution histories of
each component which may further increase the complexity of
the knowledge repository. The learning function needs to first
identify interesting data points from which something useful
can be learned. In the off-line setting, this is done by data
scientists, but in the on-line setting, this function needs to be
automated. When data points are identified, new knowledge
can be extracted. The result of this process is an update of
the current models in the knowledge repository. While neural
networks are used in many applications as models, many other
models and methods exists that are based on knowledge and
that are more explainable (for a review of knowledge-based
methods, refer to [37]).

C. Decision Making

The main task of the decision making module is to deter-
mine the best course of action in any given state of the world
in order to optimally achieve a goal. Several functions are con-
sidered part of a decision making process including planning,
plan execution and monitoring, plan validation, and executive
functions, as shown in Figure 4. The planning function takes
as input the current state* S, the goal G, the set of dynamic
capabilities, also called operators, O, and the models of the
environment (both invariant and dynamic) £, and computes
a plan 7, which is a network of actions to be executed by
other agents. Many planning systems only accept the triple
(S,G,0) in which case the operators must be modeled in
such a way to include the axioms and the dynamic models of
the environment. The operator model includes a precondition,
multiple effects (possibly with associated probabilities), and
metrics such as cost, duration, and resource utilization.

4In this paper, we don’t make a distinction between state and belief states,
although from the implementation standpoint there would be differences.
Intuitively, the belief state can be seen as an extended state that contains
a set of states together with their probability distribution.
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Planner

The plan execution function takes care of executing the
plan by sending requests of executing actions to other agents.
It takes as inputs a plan m and the response from other
agents r, and generates two outputs: requests to execute
actions contained in the plan, and plan state S;. The plan
state includes the state of each action in the plan which
can be idle (waiting execution), exec (started execution but
not finished yet), done (terminated execution successfully),
and fail (failed execution). After sending a request for an
action and changing the plan state, the plan execution function
monitors the response r for that action. The response can
be positive or negative and may also include an explanation
for a failure. When received, a response changes the plan
state and generates other requests until all actions have been
successfully executed. It is good practice to only send requests
that the plan execution engine believes can be executed by
the receiver. For this reason, before requesting and action a
to be executed, the execution engine should ask the KRM
whether the knowledge base entails the action precondition.
Similarly, the plan execution engine should verify the effect
of an action after the execution has completed. In the case of
multiple possible effects, the plan execution engine is actually
required to check which effect has been achieved to be able
to select the next action in the plan.

The plan verification function solves a run-time model
checking problem. Given the current state .S, the plan 7 and
the plan state S, plan verification checks whether the current
plan is still feasible. If this is the case, then nothing needs
to be done and the agent keeps executing the current plan.
Otherwise, the plan verification function computes a new plan
state S. that shows a possible future state of the world where
the plan fails. This information can be used by the executive
functions to determine what to do next. A more complex
check that the plan verification algorithm may perform is on
the optimality of the current plan. In fact, a change in the
environment could also be favorable to the agent in the pursuit
of its goals, and a new plan could be computed to improve
over the current one. Depending on the planning domain,
checking for optimality may require running the planning
algorithm. Some implementation details deserve attention. In
particular, projecting the possible evolution of the agent and
of the environment may require evolving the entire knowledge
repository in time which brings complexity challenges both in
terms of execution time and space.

The executive functions govern the execution of the decision
making cycle. In particular, they observe changes in the goals

requested by other agents, changes in the content of the knowl-
edge repository, and results from the other decision making
functions to determine what needs to be done. Executive
functions monitor the knowledge repository and select goals.
Several goals can be assigned to an agent. These goals can be
totally ordered or partially ordered. Executive functions select
a goal to be pursued and query the planning function for the
generation of a plan. If the plan cannot be found, another
goal must be selected or generated. When a plan if found,
the executive functions request its execution and observe the
results of both the planning execution engine and the plan
verification engine. When failures are reported, the execution
functions must decide what is the best next step which may
include continuing with the execution of the current plan,
locally fixing a plan, computing a completely new plan, or
asking for changes in the goals. The policy followed by the
executive functions is part of the design of the agent and may
very well be implemented as a full fledged planning system
itself.

D. Communication Protocol

So far, we have introduced the modules and functions that
are typical of an autonomous and intelligent system. In this
section we discuss their interaction. The interaction protocol
that allows designers to integrate functional units, and that
enables reuse in a multi-agent system, should be expressive
enough to convey the intent of an interaction, but should not
restrict the potential sequences of events that can occur among
the functions. In this section we will not discuss the transport,
network, access, and physical layer protocols (that are still
necessary to ensure connectivity among agents), but rather the
high-level interaction protocols that allows agents to engage
int a discourse.

In many cases, implementation of closed systems rely on
protocols that are specific to a particular application and that
leave only limited or underspecified interfaces for interaction.
In our case, we commit to an open architecture for systems
that are autonomous and therefore free to make their own
internal decisions while negotiating with other entities in a
dynamic environment. The seminal work that helped define
many of the protocols used for multi-agent systems was done
by philosopher John Autin [38] who worked at the definition
of communicative acts. Practically speaking, we can think of
a message from an initiator to a participant as an act that does
something. For example, a message from one agent to another
agent that informs of a severe weather condition in a certain
region, changes the information state of the receiver. Sending
information is one particular communicative act, but there are
others that are used in a multi-agent system such as requesting
to perform an action. The intent of the communicative act is
called performative and can be thought of as a message type.

The FIPA Agent Communication Library (ACL) [39], [40]
is a standard that defines a list of communicative acts together
with their message structure. Each message carries information
about the performative, the sender, the intended receiver, the
content, and several fields to indicate how to respond to the



message. Example of performatives include informing an agent
about some facts, requesting an agent to perform an action
or accomplish a goal, calling for a proposal to perform a
task, proposing a way to accomplish a task, accepting or
rejecting a proposal, and several others used to indicate how
the execution of a task is proceeding. The main criticism to
this protocol is on the semantics given to the content of a
communicative act. The content is about the belief, desires
and intentions of an agent. Such content may or may not be
truthful. Other proposals, instead, are based on commitments
[41], [42] which are promises made by an agent. For example,
rather than informing about ones internal state, a commitment-
based protocol commits the agent to making sure that such
state is eventually brought about.

IV. APPLICATION EXAMPLE

In this section we provide an example of a vehicle man-
agement system as shown in Figure 5. The different levels,
as well as some details about the algorithms used in this
specific example, can be found in [43]. Agent A1 is composed
of situational awareness module SAi, knowlege repository
KRMi, and decision making DMi (except for agent A1 which
does not inlcude a decision making module). This multi-
agent system is tasked with navigating a complex environment
that may span an entire city. Thus, planning is organized
hierarchically into a mission planning agent A2, and a motion
planning agent A3.

Each agent has its own view of the world. Agent Al
stores information about regions, adjacency and navigability.
Each region is also annotated with properties that capture
the level of difficulty that an agent may face in crossing the
region. This knowledge repository is populated by module
SA1 starting from satellite images, GIS? maps, or data streams
from on-board sensors. When processing images, SA1 starts
by identifying objects such as buildings and roads. From these
features and entities, SA1 extracts regions that are stored in
the form of polygons in dedicated data structures. KRM1 is the
recipient of the processed regions. It maintains a logical model
of such regions that is kept current by using domain specific
reasoning algorithms that compute intersection of regions.
KRM1 also stores a logical model of the actions that can
be executed by the vehicle such as moving from a region
to another region. For example, Figure 5 shows five regions
where 75 is adjacent to 73, r3, and r4. Also, a vehicle can
move from 75 to the adjacent regionrs.

Agent A2 refines the logical view of the world into a
Markov Decision Process [44]. SA2 uses information about
regions and navigability, together with action models, to
generate the set of states and the possible transitions among
them. Each state includes the region information and other
properties such as the state of the vehicle and its health. SA2
uses models from KRM2 to compute the probability that an
action a, performed by the vehicle, changes the state from
s to s'. For each triple (s,a,s’), SA2 also computes a set
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Fig. 5. Example of a three agent architecture for vehicle management.

of attributes {g;(s,a,s’)} corresponding to typical metrics of
interest such as fuel consumption, time, threat exposure, and
cost. For example, Figure 5 shows the possible outcomes of
attempting to execute action as 3 to move from region 75 to
region r3. The vehicle could end up on regions ro or ry with
some probability, or it could even fail (state f) to move. DM2
includes a planning system that is able to solve a Constrained
Markov Decision Process [45].

Agent A3 uses the detailed maps stored in KRM1 to maintain
a discrete view of the world represented as a graph. Each
vertex is a point in space. Two vertices are connected by
and edge only if the edge does not intersect obstacles. This
representation is more complex in our case for several reasons.
First, nodes in the graph may actually include information
about other state variables such as speed which enlarges the
state space. In generating the graph, SA3 will need to take into
account the dynamics of the vehicle to avoid including edges
that do not correspond to any feasible trajectory. SA3 will also
need to decorate each edge with metrics such as cost, time,
and resource utilization. DM3 will need to solve the problem
of moving between two states while satisfying a given list of
constraints.

A. Examples of Interactions

In this section, without committing to a specific standard
protocol, but we reference to some of the performatives defined
in [40], we describe the interactions among these modules in
a nominal case, and we discuss the expected communication
events in several failure cases.

The interaction diagram is shown in Figure 6. The situa-
tional awareness modules both subscribe to the state held by
KRM1. An external commander agent C sends a request to
achieve a given goal g. In a multi-agent system, this process
might first involve a call for proposal performative, followed
by potentially several agents proposing to plan for that goal,
which in turn is followed by the commander accepting on
proposal. In this case, we have shown a message going directly
to A2. In fact, we have elected DM2 to respond to this type of
requests. The request is accepted (message 2) and the planning
process starts. DM2 requests KRM2 to provide the current



state (message 3). Notice that this is a request performative
which asks the recipient to perform another communicative
act. KRM2 responds with the current state s which triggers
DM2 to compute a plan p and store it back in KRM2. After
the plan is computed, DM2 starts its execution which consists
of requesting other agents to perform actions (message 7) as
prescribed by the plan.

In our case, and action a has a description which includes
the initial state s, the state after the execution s’ and a set of at-
tributes {g;(s,a,s’)}. The action description is interpreted by
DM3 as the specification of a planning problem. In particular, s’
is a desired target state, while the attributes can be considered
as upper bounds on the corresponding metrics. In the case
shown in Figure 6, the request is accepted, and DM3 start
a similar interaction with KRM3 to request the current state,
compute a plan, and execute it. When the plan completes its
execution, DM3 informs DM2 (message 14) which validates that
that the goal s’ has been achieved and that the upper bounds on
the metrics has not been violated (the validation may require
further interaction with KRM2 to retrieve the current state).
Similarly, DM2 notifies the commander onces the original goal
g has been achieved.

Executive functions in each decision making module may
have to deal with failures that may occur during this interaction
process. Some typical failure cases include:

o A request is rejected by the recipient. The recipient
should include a reason in the response message. This
failure can happen because the recipient does not have
the capabilities to plan for the given goal, in which case,
the sender should select a different recipient or change
the goals. Another typical case is that the requested action
cannot start its execution. Consider the case of message
7. The request includes a description of the current state
s. This state must be consistent with the current state as
represented in KRM3. If this is not the case, then A2 and
A3 clearly have a different understanding of the current
state.

« A plan cannot be found. In this case, the recipient accepts
the request, but a plan to satisfy the request cannot be
found. In our example, message 11 would be a failure
message which would be sent by DM3 to DM2. In this
case, DM2 should try to change the goals if possible,
or send a failure message directly to C (together with
aborting the execution of the current plan). In order to
revise the goal, an explanation for the failure should be
provided. Generating such explanation is not typically
done by planning algorithms, although some research has
been done in this direction (see [46] for an example).

e An action is executed but the intended effect is different
than predicted. For example, in our case this means that
the result of the validation step 15 was negative. If this
failure happened because KRM2 does not entail state s’,
then DM2 could plan a recovery action to get back on
track with the plan, and the failure would be resolved
locally. If such recovery action is not available, then the
failure will need to be relayed to C. The other case is

when constraints on the set of metrics associated with the
requested action have been violated. In this case, DM2
should ask SA2 to evaluate the impact on the overall
mission and decide whether to continue with the current
plan or compute a new plan.

V. CONCLUDING REMARKS

The field of Al is broad, spanning domains that cover
sensing, data processing, data fusion, reasoning, planning,
data analysis, and learning. In the past few years we have
witnessed advances in all these areas that have enabled the
deployment of intelligent applications in fields such as finance,
health care, on-line advertising, and social media. However,
systems such as autonomous cars, unmanned aerial vehicles,
robots that aim at replacing humans, or other intelligence
software applications going beyond pattern matching, operate
in environments that cannot be fully characterized at design
time, and need to be able to respond to a wide open set of
tasks that could be assigned to them. We have presented an
open an modular architecture for these class of systems and
we have decomposed the architecture into functional units that
we believe are at the right level of granularity. Architectures
are essential to design, development, and integration processes,
and therefore are key enablers to engineering truly autonomous
and intelligent systems.

As future work, we plan to support the proposed architecture
with design guidelines, formal definition of each function,
and design and analysis methods. Since many autonomous
and intelligent systems serve critical applications, it is also
imperative to develop tools that can prove properties about
their emerging behaviors. This task is hard due to a potentially
large number of interaction patterns that may occur among
agents and functional units. A formal framework to model
the architecture and related analysis methods are necessary
tools to provide assurance guarantees, which may otherwise
be impossible or impractical to prove using a testing approach.
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