
System Level Design Paradigms:
Platform-Based Design and
Communication Synthesis

ALESSANDRO PINTO, ALVISE BONIVENTO, and ALBERTO L.
SANGIOVANNI-VINCENTELLI

University of California, Berkeley

ROBERTO PASSERONE

University of Trento

and

MARCO SGROI

DoCoMo Euro-Labs

Embedded system level design must be based on paradigms that make formal foundations and uni-
fication a cornerstone of their construction. Platform-Based designs and communication synthesis
are important components of the paradigm shift we advocate.

Communication synthesis is a fundamental productivity tool in a design methodology where
reuse is enforced. Communication design in a reuse methodology starts with a set of functional
requirements and constraints on the interaction among components and then proceeds to build
protocols, topology, and physical implementations that satisfy requirements and constraints while
optimizing appropriate measures of efficiency of the implementation. Maximum efficiency can be
reached when the communication specifications are entered at high levels of abstraction and the
design process optimizes the implementation from this specification. Unfortunately, this process
is very difficult if it is not cast in a rigorous framework. Platform-Based design helps define a
successive refinement process where each step can be carried out automatically and optimized
appropriately. We present two cases, an on-chip and a wireless sensor network design, where the
resulting methodology gave encouraging results.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer-Aided Engineering

General Terms: Design, Theory

Additional Key Words and Phrases: Embedded systems, platform-based design, communication
synthesis

Authors’ addresses: A. Pinto, A. Bonivento, and A. L. Sangiovanni-Vincentelli, Department of Elec-
trical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720;
email: apinto@eecs.berkeley.edu; R. Passerone, Department of Information and Communication
Technology, University of Trento, Universitá degli Studi di Trento via Belenzani, 12 38100 Trento,
Italy; M. Sgroi, DoCoMo Euro-Labs, Landsbergerstr. 312, 80687 Munich, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-4309/06/0700-0537 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006, Pages 537–563.



538 • A. Pinto et al.

1. INTRODUCTION

System design complexity is reaching levels that were unthinkable just a few
years ago. Combined with the increased demands on time-to-market that are
typical of consumer applications, it is creating the perfect storm in the electronic
industry. Design teams are growing constantly, and errors that go into the mar-
ket undetected increase in number and cost millions of dollars (not to mention
the verification effort that has become even larger than the design effort). We
believe that these problems can only be solved by developing paradigms based
on formal foundations that can be applied at different levels of abstraction so
as to provide a much needed unification in the design space.

In recent years, reuse has been touted as a possible cure to this malaise,
whereby a design is the result of combining appropriately predesigned and
preverified components. In this case, verification amounts to checking the cor-
rectness of the interconnection among components. The verification process is
further aided if the composition can be formally proven correct. There has been
a flurry of activity in the formal verification of interfaces that has clarified
the main issues that need to be resolved [Rowson and Sangiovanni-Vincentelli
1997a; Passerone et al. 1998; de Alfaro and Henzinger 2001; Shimizu and Dill
2002; Chaki et al. 2002; Passerone et al. 2002; Chakrabarti et al. 2002, 2003].
One of the key findings is that if the components are designed with “clean”
interfaces, then composing the components, that is, interconnecting them and
establishing protocols that guarantee “correct” communication, can be done
automatically. We call the automation of composing building blocks commu-
nication synthesis. Communication synthesis has been studied for years and
among the first pioneering works, we list Yen and Wolf [1995], Ortega and
Borriello [1998], and an interesting approach to the synthesis of communica-
tion topologies by Gasteier et al. [1998]. Recently, interest has shifted to on-chip
networks, a very rich research area that we will analyze using our framework
in Section 3.4.

As in any design problem, to perform communication design we need to first
specify the functionality and constraints that must be satisfied. Then, the syn-
thesis process consists of using a set of primitives available to the designer to im-
plement the specification so that the constraints are satisfied and the function-
ality guaranteed. The higher the level of abstraction, the easier it is to express
the functionality and constraints, as well as to catch design errors early. How-
ever, quickly reaching a high-quality implementation is more difficult due to
the semantic gap between specification and implementation. Thus, researchers
have either chosen to remain at high levels of abstraction and to optimize high-
level structures, or to begin with a low level of abstraction that could reflect
the characteristics of the implementation space. This is the case for early work
in system level design, as in Prakash and Parker [1992], Gupta and Michelli
[1993], and Ernst et al. [1993], where the specification and captured using a
formal model is partitioned in hardware and software. The approach in Gajski
et al. [1998] already proposed the idea of having two abstraction layers, but
it was not cast into a formal framework. Another important work related to
mapping applications to architecture while taking into account aspects such

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 539

as communication [Rhodes and Wolf 1999] and memory hierarchy [Li and Wolf
1998].

In this article, we present a successful design paradigm, platform-based
design (PBD) [Ferrari and Sangiovanni-Vincentelli 1999; Chang et al. 1999;
Vincentelli 2002], that can be formalized using a rigorous algebraic framework
where we conjugate the ease of expressing and verifying the design of high
levels of abstraction with the quality of low-level implementations.

As an example, assume we want to interconnect a set of nodes (e.g., comput-
ers) so that every node in the set can access every other node. Initial specifica-
tions may include the quality of service that each connection must be able to
support, such as the required bandwidth and the maximum latency of the com-
munication. We can solve this problem by constructing a network made of sev-
eral different components such as routers, hubs, modems, protocol stacks, and
links of different natures. The resources must be sized to satisfy the required
constraints. However, the gap between our original high level specification and
the implementation is obviously too large to be bridged in a single synthesis
step: clearly, enumerating all possible topologies and interconnections is not
practical, even for networks of modest complexity. A better way of approaching
this problem is to divide this gap into several layers, where each layer focuses on
a particular design choice. The question is then whether this division is optimal
and, more importantly, how much of the entire design space can be explored.
Answering these questions gives us an idea of the quality of the solutions that
we obtain. Our approach consists of quantifying the design exploration process
by relating the levels of abstraction corresponding to different layers. If two
layers are too far apart, then the performance estimation will likely be poor
and will not provide the necessary support for the synthesis algorithms.

In this context, a platform consists of a set of library elements, or resources,
that can be assembled and interconnected according to predetermined rules to
form a platform instance. One step in a platform-based design flow involves
mapping a function or a specification onto different platform instances, and
evaluating its performance. By employing existing components and intercon-
nection resources, reuse in a platform-based design flow shifts the functional
verification problem from the verification of the individual elements to the ver-
ification of their interaction [Rowson and Sangiovanni-Vincentelli 1997b; Sgroi
et al. 2001]. In addition, by exporting an abstracted view of the parameters of
the model, the user of a platform is able to estimate the relevant performance
metrics and verify that they satisfy the design constraints. The mapping and
estimation step is then repeated at increasingly lower levels of abstraction in
order to come to a complete implementation. These principles are embodied in
the Metropolis project, a software infrastructure and a design methodology for
heterogeneous embedded systems that supports platformbased design by ex-
ploiting refinement through different levels of abstraction [Balarin et al. 2002].
To make the methodology effective, the particular abstraction layers must be
tuned to each application area.

The ability to express different levels of abstraction within the same infras-
tructure is important in creating a central repository where all models can be

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



540 • A. Pinto et al.

stored and compared. This is especially convenient in a platform-based design
methodology where each step consists of the fusion of two different views, one
emphasizing the function to be performed, and the other the architecture that
supports the computation. These views are brought together in the context of
a third abstraction level, one that emphasizes the relations between the other
two. Crossing the boundaries between abstraction levels, that is, the process
of abstracting or refining a specification, is often nontrivial. The most common
pitfalls include mishandling corner cases and inadvertently misinterpreting
changes in the communication semantics.

These problems arise because of poor understanding and the lack of precise
definitions of the abstraction and refinement maps used in the flow. In addition,
abstraction and refinement should be designed to preserve, whenever possible,
the properties of the design that have already been established. This is essential
to increase the value of early high-level models and to guarantee a speedier path
to implementation.

The article is organized as follows: First, we approach the problem of ab-
straction and refinement of PBD from a formal standpoint, and then we apply
the principles of architecture exploration in the context of our formalism to
the areas of interest—the synthesis and optimization of wired and wireless
communication networks.

2. FORMALIZING PLATFORM-BASED DESIGN

Our formalization of the platform-based design methodology is based on the
framework of agent algebra [Passerone 2004]. Informally, an agent algebra
Q is composed of a domain D that contains the agents under study for the
algebra, and of certain operators that formalize the most common operations of
the models of computation used in embedded system design. Different models of
computation are constructed by providing different definitions for the domain
of agents and the operators. The algebra also includes a master alphabet A that
is used as the universe of “signals” that agents use to communicate with other
agents.

Definition 2.1. An agent algebra Q has a domain Q.D of agents, a master
alphabet Q.A, and three operators: renaming, projection, and parallel composi-
tion, denoted by rename(r), proj(B), and ‖. Each agent p ∈ Q.D is associated
with an alphabet A ⊆ A.

The operators of the algebra are partial functions on the domain D and have
an intuitive correspondence with those of most models of concurrent systems.
The operation of renaming, which takes as argument a renaming function r on
the alphabet, corresponds to the instantiation of an agent in a system. Pro-
jection corresponds to hiding a set of signals, and takes the set B of signals to
be retained as a parameter. Hence, it corresponds to an operation of scoping.
Finally, parallel composition corresponds to the concurrent “execution” of two
agents. It is possible to define other operators. We prefer to work with a limited
set and add operators only when they cannot be derived from existing ones.
In particular, in this work we will be mainly concerned with the operator of

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 541

parallel composition. The operators must satisfy certain axioms that formalize
their intuitive behavior and provide some general properties that we want to be
true, regardless of the model of computation. For example, parallel composition
must be associative and commutative. The definition of the operators is other-
wise unspecified, and depends on the particular agent model being considered.

The notion of refinement in each model of computation is represented by
adding a preorder (or a partial order) on the agents, denoted by the symbol �.
The result is called an ordered agent algebra. We require that the operators in
an ordered agent algebra be monotonic relative to the ordering. This is essential
to apply compositional techniques. However, since these are partial functions,
this requires generalizing monotonicity to partial functions. This generalization
is, however, beyond the scope of this article. The interested reader is referred
to Passerone [2004] for more details.

It is easy to construct an agent algebra Q to represent the interface that
components expose to their environment. In this case, the set D consists of
agents of the form p = (I, O), where I ⊆ Q.A is the set of input ports of the
components and O ⊆ Q.A is the set of output ports. The alphabet of an agent
p is simply A = I ∪ O, and we require that the set of inputs and outputs be
disjoint, that is, I ∩O = ∅. The parallel composition p = p1 ‖ p2 is defined only if
the sets O1 and O2 are disjoint, to ensure that only one agent drives each port.
When defined, a port is an output of the parallel composition if it is an output
of either agent. Conversely, it is an input if it is an input of either p1 or p2 and
it is not concurrently an output of the other agent. Thus, O = O1 ∪ O2 and
I = (I1 ∪ I2) − (O1 ∪ O2). Given the definitions, it is clear that in this example
connections are established by name.

The model can be enriched with information about the nature of the signals
used by the agents. For instance, in the case of agents that describe communi-
cation topologies, signals can be distinguished between those that belong to a
link, denoted by the symbol l , and those that belong to a component, denoted
by the symbol n (nonlink). We call this a typed IO agent algebra. The sets I and
O of an agent p thus become sets of pairs of signals together with their type,
that is, I ⊆ {(a, t) : a ∈ Q.A ∧ t ∈ {l , n}}, and similarly for the output ports. Par-
allel composition can also be modified so that the operation is defined only if
the ports of the agents being connected are not of the same type, that is, a link
must be used to connect two regular ports. Hence, p1 ‖ p2 is defined if and only
if for all i ∈ I1 and for all o ∈ O2, if i.a = o′.a, then i.t �= o′.t, and vice versa for
p2 and p1.

With these definitions, it is in general not possible to derive the components
from the composite. Later, we will see how this can be accomplished for a dif-
ferent model that we use to define architectures. There, we will also introduce
nontrivial orderings of the agents.

We relate different agent algebras by means of conservative approximations.
A conservative approximation from Q to Q′ is a pair � = (�l , �u), where �l and
�u are functions from Q.D to Q′.D. The first mapping is an upper bound of
the agent relative to the order of the algebra: For instance, the abstract agent
represents all of the possible behaviors of the agent in the more detailed domain,
plus possibly some more. The second mapping is a lower bound: The abstract

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



542 • A. Pinto et al.

agent represents only possible behaviors of the more detailed one, but possibly
not all. Formally, a conservative approximation is an abstraction that maintains
a precise relationship between the orders in the two agent algebras.

Definition 2.2. Let Q and Q′ be ordered agent algebras, and let �l and �u

be functions from Q.D to Q′.D. We say that � = (�l , �u) is a conservative
approximation from Q to Q′ if and only if for all agents p and q in Q.D,

�u(p) � �l (q) ⇒ p � q.

Thus, when used in combination, the two mappings allow us to relate refine-
ment verification results in the abstract domain to results in the more detailed
domain. Hence, the verification can be done in Q′, where it is presumably more
efficient than in Q. The conservative approximation guarantees that this will
not lead to a false positive result, although false negatives are possible depend-
ing on how the approximation is chosen.

To define the inverse � inv of an approximation, we investigate whether there
are agents in Q.D that are represented exactly by �u and �l , rather than just
being bounded. We do so by only considering those agents p for which �l (p) and
�u(p) have the same value p′. Intuitively, p′ represents p exactly in this case,
and we therefore define � inv(p′) = p. If �l (p) �= �u(p), then p is not represented
exactly in Q′. In this case, p is not in the image of � inv.

Definition 2.3. Let � = (�l , �u) be a conservative approximation from Q to
Q′. For p′ ∈ Q′.D, the inverse � inv(p′) is defined and is equal to p if and only if
�l (p) = �u(p) = p′.

If the algebra Q is partially ordered (as opposed to preordered), the inverse
of the conservative approximation is uniquely determined. Otherwise, a choice
may be possible among order-equivalent agents. In all cases, however, because
of the defining properties of a conservative approximation, � inv is one-to-one,
monotonic, and inverse of both �l and �u.

Assume now that for an agent p, � inv(�l (p)) and � inv(�u(p)) are both defined.
It is easy to show that � inv(�l (p)) � p � � inv(�u(p)). This fact makes precise
the intuition that �l (p) and �u(p) represent a lower and an upper bound of p,
respectively.

We can use agent algebras to describe formally the process of successive
refinement in a platform-based design methodology. There, refinement is inter-
preted as the concretization of a function in terms of the elements of a platform.
The process of design consists of evaluating the performance of different kinds
of instances in the platform by mapping the functionality onto its different
elements. The implementation is then chosen on the basis of a cost function.
We use three distinct domains of agents to characterize the process of mapping
and performance evaluation. The first two are used to represent the platform
and the function, while the third, called the common semantic domain, is an
intermediate domain that is used to map the function onto a platform instance.

A platform, depicted on the right in Figure 1, corresponds to the implemen-
tation search space.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 543

Fig. 1. Architecture and function platforms.

Definition 2.4. A platform consists of a set of elements, called the library
elements, and of composition rules that define their admissible topologies of
interconnection.

To obtain an appropriate domain of agents to model a platform, we start from
the set of library elements D0. The domain of agents D is then constructed as
the closure of D0 under the operation of parallel composition. In other words, we
construct all the topologies that are admissible by the composition rules, and
add them to the set of agents in the algebra. Each element of the architecture
platform is called a platform instance.

Performance evaluation usually requires that the elements of a platform in-
clude information regarding their internal structure. Thus, an algebra, such
as the typed IO agent algebra described, is not suitable for this purpose since
the composition does not retain the structure of the agent. The IO agents can,
however, be used as library elements D0. A new domain of agents D can then
be constructed as follows. If p0 ∈ D0 is a library element, we include the symbol
p0 in the set of agents Q.D. We then close the set D under the operation of par-
allel composition. However, we represent a composition p = p1 ‖ p2 in Q as the
sequence of symbols p1 ‖ p2. By doing so, we retain the structure of the compos-
ite, since all the previous composition steps are recorded in the representation.
We call this process a platform closure.

Definition 2.5. Given a set of library elements D0 and a composition oper-
ator ‖, the platform closure is the algebra with domain

D = {p : p ∈ D0} ∪ {p1 ‖ p2 : p1 ∈ D ∧ p2 ∈ D} (1)

where p1 ‖ p2 is defined if and only if it can be obtained as a legal composition
of the agents in D0.

The construction we have just outlined is general and can be applied to
building several different platforms, as will be shown later. The result is similar

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



544 • A. Pinto et al.

to a term algebra with the “constants” in D0 and the operation of composition.
Unlike a term algebra, however, our composition is subject to the constraints
of composition rules. For example an “architecture” platform may provide only
one instance of a particular processor. In that case, topologies that use two
or more instances are ruled out. In addition, the final algebra must be taken
up to the equivalence induced by the required properties of the operators. For
example, since parallel composition must be commutative, p1 ‖ p2 should not be
distinguished from p2 ‖ p1. This can be accomplished by taking the appropriate
quotient relative to the equivalence relation. The details are outside the scope
of this article.

On the other hand, the function, depicted in Figure 1 on the left, is repre-
sented in an agent algebra called the specification domain. Here, the desired
function may be represented denotationally as the collective behavior of a com-
position of agents, or it may retain its structure in terms of a particular topology
of simpler functions. The denotational representation is typically used at the
beginning of the platform-based design process, when no information on the
structure of the implementation is available. Conversely, after the first map-
ping, the subsequent refinement steps are started from the mapped platform
instance, which is taken as the specification. Thus, a common semantic do-
main, described in the following, is used as the specification domain. However,
contrary to the mapping process that is used to select one particular instance
among several, when viewed as a representation of a function, the mapped
instance is a specification and is therefore fixed.

The function and the platform come together in an intermediate represen-
tation called the common semantic domain. This domain plays the role of a
common refinement and is used to combine the properties of both the platform
and the specification domain that are relevant to the mapping process. The
domains are related through conservative approximations.

Definition 2.6. Given a platform QP and specification domain QS , a com-
mon semantic domain is an agent algebra QC related to QP and QS through
conservative approximations �P and �S, respectively.

In particular, we assume that the inverse of the conservative approximation
is defined at the function that we wish to evaluate. The function is therefore
mapped onto the common semantic domain as shown in Figure 2. This map-
ping also includes all the refinements of the function that are consistent with
performance constraints, which can be interpreted in the semantic domain.

If the platform includes programmable elements, the correspondence be-
tween the platform and the common semantic domain is typically more complex.
In this case, each platform instance may be used to implement a variety of func-
tions or behaviors. Each of these functions is in turn represented as one agent in
the common semantic domain. A platform instance is therefore projected onto
the common semantic domain by considering the collection of agents that can
be implemented by the particular instance. This projection, represented by the
rays that originate from the platform in Figure 2, may or may not have a great-
est element. If it does, the greatest element represents the nondeterministic
choice of any of the functions that are implementable by the instance.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 545

Fig. 2. Mapping of function and architecture.

The common semantic domain is partitioned into four different areas. We
are interested in the intersection between the refinements of the function and
the functions that are implementable by the platform instance. This area is
marked “Admissible Refinements” in Figure 2. Each of the admissible refine-
ments encodes a particular mapping of the components of the function onto the
services offered by the selected platform instance. These can often be seen as
the covering of the function through the elements of the platform library. Of
all these agents, those that are closer to the greatest element are more likely
offer the most flexibility in the implementation. Once a suitable implementa-
tion has been chosen (possibly by considering different platform instances), the
same refinement process is iterated to descend to an even more concrete level
of abstraction. The new function is thus the intersection between the behavior
of the original function and the structure imposed by the platform. The process
continues recursively at increasingly detailed levels of abstraction to reach the
final implementation.

3. ON-CHIP COMMUNICATION SYNTHESIS

In this section, we address the problem of interconnecting predesigned cores
on a chip, a problem that we will use as one of the two application areas where
the power of our proposed approach is demonstrated.

The number of intellectual property (IP) components placed on a single chip
(or in a single package) has increased to a point that the traditional bus-like
interconnect structures are not offering a satisfactory “service” to communica-
tion. This, together with the increasing latency of global wires with respect to
gate delays, suggests the use of on-chip interconnection networks [Dally and
Towles 2001]. In these networks, the position of IPs routers as well as and the
links that interconnect them is referred to as the network topology. Given a
topology, the exchange of information is regulated by a protocol that arbitrates
access to shared media and decides the routing of information flows.

In this application, the topology optimization problem becomes challenging
because of the heterogeneity of the cores, the nonuniformity of interconnection
requirements, and the fact that network agents can be freely placed on the chip
with the only constraint being that the total chip area remains fixed. Given

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



546 • A. Pinto et al.

the tight constraints in terms of throughput and energy consumption, topology
optimization plays an important role in chip design.

The standard design flow for on-chip networks starts with the application,
an MPEG decoder, for instance. The first step is partitioning the application
into subblocks which are allocated to processing elements. The result of this
step is the extraction of a set of communication constraints, such as bandwidth
and latency, among processing elements. Given the constraints, an optimal
communication topology is selected and then passed to the last step of the flow
that generates a hardware implementation of the network (this step is known
as a network compilation). Topology selection uses a library of components, such
as wires and on-chip routers, that is characterized by abstracting the available
silicon implementation.

3.1 A Brief Overview of On-Chip Network Design

The network compilation step has been addressed well by the Xpipes [Bertozzi
and Benini 2004] library and compiler. For simulation, the work of Lahiri et al.
[2004] has provided a fast environment for the simulation of on-chip communi-
cation architectures based on busses. Orion [Wang et al. 2002], a detailed power
simulator for networks on-chip, allowed us to evaluate the power/performance
tradeoff for routers and on-chip networks [Wang et al. 2005]. Topology selection
has been much more researched, as it has more impact on the final quality of
the network. Topology selection has been formulated as a synthesis problem
of a point-to-point network in Hu et al. [2002], and as a collection of two-node
subnetworks in Pinto et al. [2002]. The benefits and challenges of networks
on-chip were fully described in Benini and Micheli [2002], and after having re-
alized the lack of theoretical frameworks for dealing with arbitrary topologies,
regular structures such as meshes and toruses were adopted as communication
fabric where each computing element sits in the tiles of the mesh. In Hu and
Marculescu [2003, 2004], the problems of assigning cores to the tiles of a mesh
network and of generating a routing protocol that minimizes the communica-
tion cost were explored. In this approach, the library of topologies is limited
to meshes. A similar approach was taken by researchers regarding SUNMAP
[Murali and Micheli 2004], an algorithm for automatic mapping and topology
selection. Here, the library consists of several regular topologies such as meshes,
toruses, and butterflies. SUNMAP is part of the NetChip project [Bertozzi et al.
2005], which aims at providing the entire flow for the design and optimization
of networks on-chip. Other relevant works in the area of topology selection are
more synthesis-oriented.

The general topology synthesis problem was not entirely abandoned: In Pinto
et al. [2003], the authors proposed a two-step algorithm that first clusters the
communication constraints and then synthesizes each cluster as a two-node
network. In Srinivasan et al. [2004], the clustering step is performed by solv-
ing a mixed-integer linear program that can lead to more complicated topology
than the previously mentioned one. However, the cost of links was not consid-
ered. Finally, OIDIPUS [Ahonen et al. 2004] optimizes the relative positions of
processing elements to minimize communication cost.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 547

Fig. 3. Platform-based design flow for communication synthesis.

Many practical solutions have been proposed and adopted in industry. Most
of them are implementations and standardizations of bus architectures like
the advanced microprocessor bus architecture (AMBA) system1 by ARM and
the core-connect architecture2 by IBM.

A few companies specialize only on the communication infrastructure, like
Sonics3 and recently, Arteris,4 specifically for on-chip networks.

3.2 Constraint-Driven Communication Synthesis

Figure 3 shows the communication synthesis design flow. The domain for each
platform is obtained following the construction of Definition 2.5. The set of

1http://www.arm.com/products/solutions/AMBA Spec.html.
2http://www-03.ibm.com/chips/products/coreconnect.
3http://www.sonicsinc.com.
4http://www.arteris.net.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



548 • A. Pinto et al.

library elements consists in all cases of appropriate subsets of the typed IO
agent algebra. At the highest level of abstraction, the connectivity platform Qc

is only concerned with point-to-point connections between sources and des-
tinations. The library elements of Qc are of three types: the set of sources
S = {(I, O) : I = ∅}, the set of destinations D = {(I, O) : O = ∅}, and the set
of point-to-point links L = {(I, O) : |I | = |O| = 1}. Furthermore, the input and
output ports of sources and destinations must all have type n, while ports that
belong to links have type l . Hence, given the rules of composition, it is not pos-
sible to connect sources to destinations directly. Architecture templates in the
connectivity platform are simply point-to-point connections amongst a set of
source agents and a set of destination agents.

A preorder in this algebra can be defined by considering substitutability. In
general, an architecture that offers more connections can be substituted for
another that offers fewer connections. Hence, we define p1 � p2 if and only
if p1 and p2 have the same set of sources and destinations, and for each link
between a source-destination pair in p2, there is a corresponding link between
the same source-destination pair in p1. To illustrate the order, consider the
simple case shown on the right in Figure 3. There, one source, s1, is connected
to two destinations, d1 and d2. The most refined architecture instance includes
all links of s1 to d1 and d2. Intermediate architectures include only one link to
either d1 or d2. The greatest element is finally the architecture with no links.
The connectivity platform could be used to evaluate the impact of connectivity
on the performance of a system.

As described in Section 2, the function to be implemented on the architecture
is represented in some suitable domain. This domain depends on the applica-
tion [Balarin et al. 2002]. For instance, multimedia applications are usually
described using nondeterministic Khan process networks (KPN). For the pur-
pose of mapping, the function is abstracted using a conservative approximation
� f from the function domain to a common semantic domain (which we call an
abstract function domain) described by a typed IO agent algebra Qcf that in-
cludes multicommodity flow information.

A commodity is a pair of elements (cn, cv), where cn is the type of the com-
modity and cv ∈ R

+ is the commodity value (we only consider this simplified
description of the communication requirements to keep the exposition simple,
but other constraints could be take into account, such as latency and statistical
properties). A port of an agent in the abstract function domain includes a com-
modity, in addition to its type. A parallel composition is defined only if the link
connected to a port carries the same commodity with a higher value. An order
for this model can be defined by considering the connectivity (for the connectiv-
ity platform) and the multicommodity flow containment (flows have the order
induced by the reals). The approximation � f maps the input and output ports
of a function to abstract source-destination pairs and the communication chan-
nels to links. The conservative approximation also assigns commodities to ports
that are estimates of the bandwidth required by the communication. Since the
abstract model has no information about behavior, none of the processes can be
represented exactly and the inverse of the conservative approximation is not
defined.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 549

The inverse of the conservative approximation �c
inv maps a connectivity plat-

form instance in the abstract function domain. If there exists an instance with
the required connectivity (case 1 in Figure 3), then it is possible to find a set
of admissible refinements in the common semantic domain. It might happen,
though, that the intersection between the function instance concretization and
the platform instance concretization is empty. This is the case, for example,
when there is a constraint on the maximum number of links in the connectivity
platform. Among all agents in the set of admissible refinements, the greatest
element is the one having the minimum number of connections, each carrying
the minimum commodity such that the function instance constraints are still
satisfied. This agent, which we call a connectivity instance, is selected as the
function instance for the next level of abstraction. This choice is made by con-
sidering that connections and commodity values are constraints that must be
satisfied in some common semantic domain at lower levels of abstraction. This
agent is the less constraining agent and is therefore a good candidate for cheap
implementations.

Platforms used in communication synthesis, however, often include more
complex topologies. To model this situation we build the topology platform Qt ,
which uses the same elements of the connectivity platform with the addition
of a library component called a router. The set of routers is formally defined as
R = {(I, O) : (|I | ≥ 1 ∧ |O| > 1) ∨ (|O| ≥ 1 ∧ |I | > 1)}. Notice that we are not
yet considering simple one-input one-output FIFOs. The ports of a router are
required to be of type n, so that links must be used to connect the routers to
other elements of the platform. The routers allow us to construct all the well
known topologies, like rings, crossbars, stars, and busses.

The ordering of agents is defined by the underlying connectivity and the
number of hops on each source-destination path the number of routers among
all paths from source to destination, in particular, p1 � p2 if and only if p1

connects more source-destination pairs than p2, with fewer or as many hops.
We can establish a relationship between the topology and the connectivity plat-
form by a conservative approximation �t . The upper bound ignores the routers
by constructing the underlying connectivity, while the lower bound is obtained
by considering only the existing point-to-point links between sources and des-
tinations. Thus, the inverse of the approximation �t

inv maps the connectivity
instance to the corresponding fully connected topology.

A mapping between the connectivity instance and communication topology
is realized in a common semantic domain Qsp which contains both topology
and multicommodity flow information. Point-to-point connections in Qcf become
source-destination paths in Qsp.

The algebra Qsp is similar to Qcf, with the addition of routers as library
components. The library of this platform consists of sets of elements, one for
each of the element types: sources, destinations, links, and routers. For instance,
there are several types of links depending on their commodities.

The common semantic domain Qsp is related to the abstract function do-
main Qcf and the topology platform Qt , through the appropriate conservative
approximations � f s and �s, respectively. In either case, the approximation ig-
nores information not contained in the respective abstract algebra. The lower

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



550 • A. Pinto et al.

bound defines, as usual, the conditions under which the representation is ex-
act. For example, a fully connected topology in Qsp can be represented exactly
in Qcf. Similarly, any topology with zero flows is represented exactly in Qt . The
inverses �

fs
inv and �s

inv of such approximations thus establish correspondences
between the elements of Qcf and Qsp, and between Qt and Qsp. In particular,
a topology in Qt is refined in an ordered set of topologies by �s

inv, the great-
est element being the topology with commodities all equal to zero. Similarly,
a multicommodity flow connectivity graph in Qcf is mapped by �

f s
inv to all the

possible topologies and their flows that satisfy the connectivity and multicom-
modity flow constraints imposed by the connectivity instance. These mappings
are represented by the triangles in Figure 3 which denote all the refinements,
in addition to the mapped element. The intersection of these sets represents all
the possible networks that satisfy the connectivity and multicommodity flow
requirement. It is possible that a specific topology maps to a set which does not
intersect the concretization of the connectivity instance in the common seman-
tic domain. In that case, the topology is ruled out from the search space.

3.3 Synthesis of Network Topology

The platform-based design of communication topology is implemented in COSI,
the “communication synthesis infrastructure” under development at the Uni-
versity of California at Berkeley. COSI accepts as input a connectivity instance,
described as a set of source-destination pairs, with an associated commodity
that can be a general quantity defined by the user who has to specify both the
commodity domain and a total order on it. The description format forces the
connectivity instance to satisfy the composition rules of Qcf. For instance, it is
not possible to specify a direct connection between a source and a destination,
but a link will be instantiated to connect them. COSI also accepts the set of
library components of the common semantic domain Qsp.D0 as input. The data
structure is able to represent agents in Qsp.D. A position can also be assigned to
each agent instance and a cost can be assigned to each library element, leading
to a more refined algebra. The first scenario is concerned with the automatic
topology selection of a communication network satisfying connectivity and mul-
ticommodity flow constraints. Figure 4 shows one example of how the synthesis
process moves into the search space. Since the topology synthesis problem is,
in general, NP-hard [Garey and Johnson 1979], we build an optimal algorithm
and use the general framework to select a good initial solution and a strategy
to search in the solution space.

We build a complete topology using the following construction: For each
source and for each destination, we add a router and a connection link con-
necting them; for all ordered pairs of routers we add a link. The resulting
topology is shown in Figure 4: It is a two-level network where the outer net-
work is represented by the set of sources and destination instances while the
inner network is a complete topology on the routers. Agent p is fairly at the
bottom in the preorder because it has full connectivity and a minimum of two
hops for every source-destination pair. The values of the commodities supported
by each component can either be the maximum available in the library, or the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 551

Fig. 4. Abstraction and refinement in communication topology selection.

minimum such that constraints imposed by the connectivity instance are still
satisfied.

We can gauge whether an agent p ∈ Qsp satisfies the constraints imposed
by the connectivity instance pf ∈ Qcf by checking that �

f s
l (p) � pf . The con-

servative approximation �
f s

l is the all pair max multicommodity flow which
given a network topology, computes the maximum multicommodity flow for
each source-destination pair.

The complete topology p is a good starting point for the synthesis algorithm
because of its generality. Abstracting p in the topology platform gives an agent
which is also at the bottom of the order due to its high connectivity and low
number of hops. This means that it can substitute many other known topologies
and hence, is a very general communication architecture. The triangles in the
topology platform of Figure 4 represent different topology templates, like rings,
stars etc., that can all be substituted by �s

l (p).
While complete topology is a good starting point for the synthesis algorithm,

choosing an agent low in the order means propagating more restrictive con-
straints to the lower level of abstraction (high connectivity and low number of
hops, in this case). The first step is to decrease the cost of the complete topology
by decreasing the commodities value as much as possible. A mincost multi-
commodity flow algorithm [Wynants 2001] is used to decrease the commodities
value while satisfying the constraints imposed by the connectivity instance.
The mincost multicommodity flow will optimize flows in the original topology,
obtaining another agent po. Since the topology, platform has no information
about commodities, we note that �s

l (p) = �s
l (po).

The second step is the topology selection. Given po, it is possible to generate
different topologies by removing edges in the complete graph. When an edge

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



552 • A. Pinto et al.

is removed, the commodity it carries must be redistributed in the network.
This algorithm is known as the restoration algorithm [Wynants 2001], which
can be used to generate known topologies like rings, stars, etc. If we abstract
the topology generated by the restoration algorithm, it gives an agent which is
higher in the order than the abstraction of the complete topology.

In recent implementations, COSI also solves the joint optimization of node
position and edge flow to minimize total energy consumption. The optimization
problem can be stated as follows:

min C(p)

s.t. �
f s

l (p) � � f (f),

where C(p) is the cost of the selected full topology and f is the application. Let
q ∈|| p denote that agent q appears in the symbol p. The cost of a network is
computed as:

C(p) =
∑

l∈||p∧l∈L
C(l) + λ

∑

r∈||p∧r∈R
C(r),

where the cost of a link depends on its length and flow and the cost of a router
depends on the cumulative input flow. The parameter λ measures the relative
cost of computation versus communication that corresponds to the relative cost
of storing data in the router’s queues versus communicating the data on a wire
of unit length. The key point is to explore the largest possible design space.
The complete topology has this goal since every other topology can be obtained
starting from it.

COSI (http://embedded.eecs.berkeley.edu/cosi) is an open infrastructure
that allows an easy method to plug in other algorithms for communication syn-
thesis (not limited to topology exploration only). Recent developments have im-
proved the previous approach. In particular, complicated platform constraints
can be included in the library. The increasing importance of latency asks for
a careful abstraction of the communication link with respect to the maximum
distance that a link can span. The critical sequential length lst is the length that
can be spanned within a clock cycle, after which a stateful (or clocked) repeater
must be inserted. Stateful repeaters are single-input single-output buffers and,
together with the routers’ internal queues, account for a large amount of the
on-chip network power consumption.

Another constraint to take into account is the available area to install routers
and clocked repeaters. We assume that the available space is another input of
the problem that limits the topology design space. As we have already said,
point-to-point connections in Qcf become source-destination paths in Qsp, there-
fore, the problem is to build a graph that encodes all the topology instances
and then to select a set of source-destination paths to route all constraints
while minimizing the cost function. Let G = (V , E) be such a graph and let
P be the set of all admissible positions for routers/repeaters. A vertex v be-
longs to V if and only if its position is in P. The set of sources and destina-
tions also belongs to the set V . Given two vertexes u, v ∈ V , the edge (u, v)
belongs to E if and only if its length is shorter that the critical sequential
length.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 553

A set of algorithms can now be executed on graph G to remove edges and
routers that are not contained in the final optimal topology. A set of well studied
problems can be used to find an optimal solution. Currently, two options are
available to the designer. A minimum cost routing based on the buy-at-buy
networks design algorithm described in Charikar and Karagiozova [2005] can
be directly executed to obtain an optimal network design. The synthesis can
be divided into a network interface allocation phase and an optimal routing
between interfaces. Network interfaces are expensive resources because they
have to perform tasks like protocol adaptation, and the designer may want
to limit the number of interfaces in the design. We solve the network interface
allocation problem by casting it into an instance of the k-median problem, where
available routers are considered facilities and sources, and destinations are
considered cities. We use the primal-dual algorithm in Vazirani [2003]. Once
the interfaces are installed, the source-destination constraints are translated
into interface-to-interface constraints and the optimal routing is solved using
the buy-at-bulk network design algorithm.

3.4 Comparison with Other Approaches

In Hu et al. [2002], the authors consider point-to-point networks. This means
considering a platform that only contains sources, destinations and links. In
this framework, the exploration is done in the abstract function domain Qcf

(in Figure 3) and does not consider the successive platform Qsp where more
complicated topologies (that could possibly be more cost efficient than a point-
to-point implementation) can be explored. The design space exploration is done
in the more refined domain where sources and destinations have a position
associated with them. Let Qcfp denote such a domain. The algorithm minimizes
energy consumption and wire length by considering positions as optimization
variables. Given p, q ∈ Qcfp.D, p � q if they have the same connectivity and
the sum of distances of all links in p is greater than or equal to the sum in q.
The algorithm searches for the agent that is higher in the order. Such an agent
will be less constraining for the successive step of routing.

In Hu and Marculescu [2003, 2004] and Murali and Micheli [2004], the ex-
ploration is done in Qsp. The method by which the exploration is carried out is
by fixing the network topology to a specific one, like a mesh or a torus, and op-
timizing communication on such a structure. The first step that the algorithm
performs is to map the functional units on the cores of the platform. This step
corresponds to the selection of an agent f ∈ Qcf. The second step is to select a
topology template q ∈ Qt like a mesh, torus, butterfly, etc. The optimization
algorithm selects an agent p ∈ Qsp that minimizes a cost function (typically,
power consumption) and such that �

f s
l (p) � f ∧ q � �s

u(p). This procedure
is repeated for all possible f (i.e., for all mappings of the application on cores)
and for all possible communication templates q. In order to limit complexity, a
heuristic is used to evaluate only a subspace of the possible mappings and the
exploration is usually limited to a set of known topologies.

Our approach is substantially different. We start form an initial topology
that is further down in the preorder, lower than meshes, tori, etc. We then use

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



554 • A. Pinto et al.

our algorithms to minimize its cost by removing or contracting edges. Even if
the algorithm complexity is the same, we explore a larger design space and we
can potentially find a topology p such that �s

l (p) does not compare with any
known topology but is a heterogeneous network.

4. WIRELESS SENSOR NETWORK SYNTHESIS

The second application of our approach is the design of wireless sensor networks
(WSN), an area of great interest in the research and industrial community. A
WSN is a collection of wirelessly connected sensors, controllers, and actuators
that are deployed in an environment and cooperatively work to implement a
given monitoring or control application. The development of an operational
WSN involves the cooperation of three different communities: at the applica-
tion level, the end users (i.e., control engineers, mechanical engineers, biolo-
gists); at the node level, the designers of the wireless nodes together with their
programmable interfaces; and the designers of the communication protocols.
The interactions between design teams of different communities and compa-
nies have traditionally been a problem in handling complex design chains such
as the one for WSN. In addition, it must be highly optimized for the use of the
scarce resources that are usually available, and, being deeply embedded in their
environment, must quickly adapt to the external changes that occur during op-
eration. Hence, it is an ideal test case for PBD and the synthesis approach we
advocate.

As in the case of on-chip networks, we identify a proper set of abstraction
layers and formalize the refinement steps as a sequence of mappings onto more
refined semantic domains. Although the platform-based design structure re-
mains the same, the actual platforms and mapping tools are obviously specific
to the WSN domain.

4.1 Sensor Network Service Platforms

At the application level, we introduce the highest layer of abstraction in our
methodology, the sensor network service platform (SNSP) [Sgroi et al. 2004].
Similar to the role played by the Socket in Internet applications, an SNSP offers
an application interface that is able to support the possible services that can
be used in a WSN, independent of the network implementation.

To perform its functionality, a controller (algorithm) has to be able to read
and modify the state of the environment. In a WSN, controllers do so by relying
on communication and coordination among a set of distinct elements that are
distributed in the environment in order to complete three different types of
functions: sensing, control, and actuation. The role of the SNSP is to provide
a logical abstraction for these communication and coordination functions. The
SNSP offers a query service (QS) used by controllers to get information from
other components, a command service (CS) used by controllers to set the state of
other components, a timing/synchronization service (TSS) used by components
to agree on a common time, a location service (LS) used by components to learn
their location and a concept repository service (CRS) which maintains a map
of the capabilities of the deployed system and is used by all the components

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 555

to maintain a common, consistent definition of the concepts they agreed upon
during the network operation.

An SNSP is defined as a set of services to be made available to an appli-
cation programmer independently of its implementation on any present and
future sensor network platform. Refining an SNSP requires identifying the
communication protocols among the nodes and implementing the middleware,
as well as protocol functions, into physical nodes.

4.2 WSN Synthesis

Similarly to the on-chip network case, WSN synthesis consists of a sequence of
successive refinements that starts with a description of the application already
mapped onto the SNSP and delivers at the other end a network of wireless
sensor nodes running a communication protocol. Although our methodology can
be applied to a broad range of applications, for the sake of the description we
consider here the simple example of a monitoring application where three robots
must be checked for vibration and eventually powered down if the vibration
values exceed a given threshold. We restrict the services of the SNSP to only
the query service and command service, and the implementation space to a
centralized control using a base station.

With reference to Figure 5, the highest level of abstraction is a functional
description of the control algorithm. As explained in Bonivento et al. [2005],
the control algorithm is specified as a sequence of queries and commands. Intu-
itively, a query is a request for sensed data from a specified area (i.e., a robot).
Similarly, a command is a request for an actuation in a particular area. Re-
strictions on how queries and commands can be composed in the functional
description depend on the model of computation that the end user wants to
employ. The pseudocode for our example is shown by Algorithm 1.

The application consists of a cyclic routine that needs vibration data from
each of the robots every 30 seconds. It further specifies the relative positions
of three robots with respect to the controller, that the data should be sampled
at 100 samples/seconds for 10 seconds, and that it should come back within 5
seconds with an error rate of 5%. It then averages the data collected from each

Algorithm 1

Rob1 ← (x1, y1)
Rob2 ← (x2, y2)
Rob3 ← (x3, y3)
loop

Q1 ← (Rob1, Vib, All, scope = 10s, Sr = 100sam/s, L = 5s, Er = 5%)
Q2 ← (Rob2, Vib, All, scope = 10s, Sr = 100sam/s, L = 5s, Er = 5%)
Q3 ← (Rob3, Vib, All, scope = 10s, Sr = 100sam/s, L = 5s, Er = 5%)
if R(Q1) > Vmax||R(Q2) > Vmax||R(Qr3) > Vmax then

C1 ← (Rob1, off )
C2 ← (Rob2, off )
C3 ← (Rob3, off )

end if
every 30s

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



556 • A. Pinto et al.

Fig. 5. Layers of abstraction and design flow.

robot and, if any of these three values is over a given threshold, shuts down all
three robots.

The first platform is the virtual connectivity platform Qvcf. The library el-
ements are of four types: the set of virtual sensors Sv, virtual controllers Cv,
virtual actuators Av, and bidirectional links L. A virtual sensor sv ∈ Sv is an
abstraction of a sensing area; it is characterized by its position and will be re-
fined later on in a cluster of sensor nodes. Similarly, a virtual actuator av ∈ Av

is the abstraction of an actuation capability; it is characterized by its position
and will eventually be refined in one or more actuators. A virtual controller
cv ∈ Cv is an abstraction of a computation capability and, in this particular
example, will be eventually refined in a base station. Virtual components and
links can be composed to form other agents. It is not possible to directly connect
virtual components, but links must be used. Furthermore, a virtual sensor can

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 557

be linked only to a virtual actuator, a virtual actuator can be linked only to a
virtual controller, and virtual controllers cannot be directly linked. A partial
order can be defined for this domain such that v1 � v2 if and only if for each
virtual component in v2, there is a corresponding virtual component in v1 and
for each link in v2, there is a corresponding link in v1.

The common semantic domain for this step is called a requirement graph and
is denoted by Qrg. This domain is similar to Qvcf, but links are annotated with a
pair (L, Er ) that represents the end-to-end latency and error rate requirements,
and virtual sensors are annotated with a pair (Sr , F ) that represents the sens-
ing rate requirement and the type of aggregate data (i.e., average value, max
value, all values) for that area. While the rules of composition are the same as
Qvcf, the order is such that v1 � v2 if for each virtual component in v2, there is
a corresponding virtual component in v1 with higher or equal Sr and the same
F , and for each link in v2 there is a corresponding link in v1 with a smaller or
equal latency and error rate. Intuitively, given two comparable instances of this
domain, the highest is the one with looser communication and sensing require-
ments. We call ψ f the conservative approximation that maps the functional
description onto Qrg.

Formally, given an agent r ∈ Qrg, we can define a conservative approximation
as follows. The lower bound �vc

l abstracts the quantities Sr ,F ,L, and Er . The
upper bound �vc

u also abstracts all links. Agents r ∈ Qrg that are represented
exactly in Qvcf are agents with no links. We select an instance from the Qvcf that
has the minimum number of virtual components declared by the functionality.
Then �vc

inv maps this instance onto Qrg. The cone in Figure 5 represents the set
of agents that have the same number and types of virtual components as in
the selected instance, but with links connecting them, and all possible combi-
nations of latency, error rates, and sensing rates. For the sake of simplicity, in
the sequel we do not specify the upper and lower bound for each conservative
approximation whose construction should be intuitive.

The intersection of the two cones in Qrg gives all the requirement graphs
with connectivity, latency, error rates, and sensing rates sufficient to support the
initial functionality. Among these possible refinements we choose the “highest,”
which is the one with the minimum number of virtual components and looser
sensing, latency, and error rate requirements. We call this instance rg and this
is the starting point for the rest of the synthesis flow.

The tool that generates the instance rg starting from the functional descrip-
tion is called Rialto [Bonivento et al. 2005]. Rialto starts from the sequential
description of the control algorithm, then considers all possible branches in the
decision tree of the algorithm and analyzes all the communication and sensing
requirements for each of these branches. Starting from these requirements, it
generates the minimum requirements that each link and virtual sensor have
to satisfy so that the communication and sensing infrastructure is able to sup-
port the application in whatever decision branch it may end during the actual
execution.

The next step is to refine rg, the requirement graph, into a clustered topology.
The goal is to substitute virtual components with an adequate set of physical
components.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



558 • A. Pinto et al.

To do this, we define the sensor network implementation platform Qsnip. The
elements of the library are a collection of physical nodes (e.g., Mica, Telos, and
Intel motes), base stations (e.g., Stargate), and links. Nodes and base stations
are characterized by their hardware abstraction (i.e., component size, mem-
ory, power consumption, clock speed), radio interface, sensing capabilities, lo-
cation, and price. Physical components can be connected only using links. A link
represents the capability of communication between two physical components.
Restrictions on the possibility of directly linking two components reflect the
reachability due to their radio interface. For example MicaZ and Telos motes
can be linked since they both are ZigBee compatible, while Mica2 and MicaZ,
that are not radio compatible, cannot be directly linked, but a path between the
two can exist if there is also a third component (i.e., a base station or a node
with a reconfigurable radio) that is able to support both radio interfaces. We
can define a partial order similar to the one of Qrg, where the higher element
is the one representing a minimum topology with looser requirements.

The common domain for this step is the clustered topology Qct. An instance
of this domain is a graph of interconnected physical components where the
components are associated to a cluster. Furthermore, links are annotated with
the usual requirement pair (L, Er ), components are annotated with a sensing
requirement Sr , and clusters with the aggregate function type F . We can define
a partial order in the same way as in Qrg, where the higher element is the one
representing a minimum topology with looser requirements.

The instance rg is mapped to a set of ordered agents in Qct. Each agent
in this set has at least a base station for each virtual actuator, a sufficient
number of clustered sensor nodes for each virtual sensor so that the sensing
requirement is satisfied, and a sufficient number of actuators for each virtual
actuator. In addition, it must have a weighted link between the base station
and each component with a latency and error rate less than or equal to the
correspondent quantities between the virtual actuator and virtual sensor in rg.

Selecting an agent in Qsnip and mapping it to Qct means selecting the hard-
ware platform and a lower bound on the density of nodes for each cluster. The
mapping gives a set of ordered agents that may or may not intersect the set of
agents obtained by mapping rg to Qct. This intersection represents all the clus-
tered topologies with a sufficient number of interoperable nodes per cluster and
connotations that are good enough to satisfy the link and sensing requirements.

We now have to eliminate a set of solutions that are unfeasible for any of
the following reasons: size constraints (e.g., it is impossible to place 100 Telos
motes in a square foot), external constraints (e.g., for regulatory issues, it is not
possible to place the motes on some parts of the robots), and budget constraints
(e.g., the overall solution has too many nodes and we cannot afford it). Among
the remaining solutions, choosing the right one to propagate down in the syn-
thesis process is not trivial. Given a number of nodes per cluster, we choose the
solution with the loosest sensing and communication requirements. However,
it is difficult to understand at this level what a good number of nodes per cluster
is. On the one hand, more nodes involve a higher cost of the solution. On the
other hand, the higher the density of the network, the more energy efficient the
final solution will be because nodes can be duty cycled for energy preservation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 559

However, this energy consumption cannot be estimated until the communica-
tion protocol is decided and this happens at the next step of the design flow.
Consequently, we suggest starting with a solution that is relatively high in the
space of possible solutions (i.e., with a low number of nodes), and after the com-
munication protocol is mapped, evaluating to see if the energy consumption per
node is satisfactory for a good lifetime of the network. If this is not the case,
the solution is to go back and select another possible solution with more nodes.
As we will explain later, once the protocol is mapped on the nodes, the tradeoff
curve between energy consumption and density is available. Consequently, a
good number of nodes can be selected thus facilitating this iteration process.

As already mentioned, the last step is concerned with associating a commu-
nication protocol to the physical components such that the communication re-
quirements are satisfied and the energy consumption minimized. To drive this
step, we define the sensor network ad-hoc protocol platform (SNAPP), Qsnapp.
The library elements of the SNAPP are MAC and routing protocols. In the
wireless sensor network domain space, layering between MAC and routing is
usually not a good solution since it significantly reduces the energy optimiza-
tion capabilities associated with crosslayer design. Consequently, the SNAPP
is populated by noncomposable instances of integrated MAC and routing solu-
tions. Different protocols have been developed for different application classes.
For example, SERAN [Bonivento et al. 2005] was developed for periodic con-
trol applications with more than one cluster, while the randomized approach
of Bonivento et al. [2006] (called RAND in Figure 5) is optimized for single clus-
ter topologies. These protocols are “parametrized,” meaning that their struc-
ture is specified, but their working point is determined by a set of parameters.
For example, in SERAN the working point of the protocol is determined by
a channel access probability p, a TDMA slot duration S, and a TDMA cycle
duration �.

The common semantic domain in this step is represented by the instantiated
network domain Qin. An instantiated network is an operational WSN, that is,
a network of physical nodes with a communication protocol. Mapping the se-
lected clustered topology onto this common domain, we obtain all the possible
instantiated networks that satisfy the given E2E requirements on latency and
error rate, while mapping a SNAPP instance we obtain all the possible instanti-
ated networks that use the selected protocol with all the feasible combinations
of the free parameters (i.e., p, S, and � for SERAN). The intersection between
the two mappings gives all the possible instantiated networks that use the se-
lected protocol and satisfy the given communication constraints. Among these
solutions, we select the one that minimizes energy consumption. At this point
we can evaluate if the synthesized solution can comply with the lifetime re-
quirements of the network. If this is the case, we are done, otherwise we need
to get back to the clustered topology domain and select an instance with more
nodes.

This final refinement is obtained as the solution of a constrained optimization
problem, where the constraints are the latency and error rate requirements
while the cost function is the energy consumption that is estimated based on
an abstraction of the physical properties of the candidate hardware platform.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



560 • A. Pinto et al.

An important and usually nontrivial step in solving this constrained opti-
mization problem consists in translating the E2E requirements into hop-to-hop
(H2H) requirements, and to project the energy cost of a single hop communica-
tion over a sequence of hops considering aggregate effects such as collisions and
path reconvergences. The actual equations that perform these translations are
different for different protocols and usually involve the manipulation of prob-
abilistic functions. However, the ability to perform this refinement is subject
to the capability of characterizing the interaction among the different layers
of the protocol solution using a mathematical framework. The formalism and
the capability of offering end-to-end guarantees instead of local guarantees
are what distinguish our approach from the previous protocol design for WSNs.
More detailed descriptions on how this optimization problem is solved, together
with the initialization algorithms for the instantiated network for the different
protocols are available in Bonivento et al. [2005, 2006].

4.3 Comparison with Other Approaches

Since we propose a design methodology that supports all phases of WSN design
from application to implementation, there is quite a large body of related work.
For sake of brevity, we outline only some recent approaches while we refer
to Bonivento et al. [2006] for a more detailed analysis.

A system-level approach to the design of WSNs was recently presented in
Polastre et al. [2005]. A platform called SP is proposed between the link and
the network layer. The SP should provide adequate modularity for the nodes
to support different MAC and routing layers. The philosophy is similar to the
Internet “everything over IP,” where in this case it would be “everything over
SP.” Although this is a very interesting architecture for best effort networks,
we believe it is not appropriate for control applications where E2E guarantees
are required. Our top-down approach and synthesis method are customized for
control applications.

An attempt at raising the level of abstraction was presented in Yu et al.
[2005], where a classification for node communication mechanisms was in-
troduced to allow for a higher-level description of the network algorithms. In
Bakshi and Prasanna [2004], the proposed methodology is based on a bottom-up
part for the description of network algorithms, a top-down part to describe the
application, and a mapping process to deploy software onto the nodes. Although
the overall method is compatible with the platform-based design paradigm ad-
vocated in this article, the layers of abstraction are quite different. Our ap-
proach emphasizes the control-based nature of WSN applications and offers
a rigorous semantics and set of primitives to interpret timing issues at a very
high level, hence providing a well-defined level of abstraction for the application
designer.

5. CONCLUSIONS

We strongly believe that system-level design needs a major breakthrough to
resolve the many issues facing the electronics industry. No matter what this
breakthrough is going to be, we believe that it will be based on rigorous

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 561

mathematical foundations and a unifying approach that can be applied to all
levels of abstraction of design. In this article, we presented a formalization
for platform-based design, a design approach proposed for all levels of system
design, and examples of the application of this formalized approach to commu-
nication synthesis, an important step complex designs in itself towards making
both feasible in a reasonable time and correctly.

REFERENCES

AHONEN, T., SIGUENZA-TORTOSA, D. A., BIN, H., AND NURMI, J. 2004. Topology optimization for
application-specific networks-on-chip. In Proceedings of the 2004 International Workshop on Sys-
tem Level Interconnect Prediction. ACM Press, New York, 53–60.

BAKSHI, A. AND PRASANNA, V. 2004. Algorithm design and synthesis for wireless sensor networks.
In Proceedings of the International Conference on Parallel Processing.

BALARIN, F., LAVAGNO, L., PASSERONE, C., SANGIOVANNI-VINCENTELLI, A. L., SGROI, M., AND WATANABE, Y.
2002. Modeling and designing heterogeneous systems. In Concurrency and Hardware Design,
Advances in Petri Nets. Springer Verlag, London, 228–273.

BENINI, L. AND MICHELI, G. D. 2002. Networks on chips: A new SOC paradigm. Computer 35, 1,
70–78.

BERTOZZI, D. AND BENINI, L. 2004. Xpipes: A network-on-chip architecture for gigascale systems-
on-chip. IEEE Circuits Syst. 4, 2, 18–31.

BERTOZZI, D., JALABERT, A., MURALI, S., TAMHANKAR, R., STERGIOU, S., BENINI, L., AND MICHELI, G. D.
2005. NOC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE
Trans. Parallel Distrib. Syst. 16, 2, 113–129.

BONIVENTO, A., CARLONI, L., AND SANGIOVANNI-VINCENTELLI, A. 2005. Rialto: A bridge between de-
scription and implementation of control algorithms for wireless sensor networks. In Proceedings
of the 5th ACM International Conference on Embedded Software. Jersey City, NJ.

BONIVENTO, A., CARLONI, L., AND SANGIOVANNI-VINCENTELLI, A. 2006. Platform based design for wire-
less sensor networks. To appear in MONET.

BONIVENTO, A., FISCHIONE, C., AND SANGIOVANNI-VINCENTELLI, A. 2006. Randomized protocol stack
for ubiquitous networks in indoor environment. In Proceedings of the IEEE Consumer Commu-
nications and Networking Conference. Las Vegas, NV.

BONIVENTO, A., FISCHIONE, C., SANGIOVANNI-VINCENTELLI, A., GRAZIOSI, F., AND SANTUCCI, F. 2005.
Seran: A semi random protocol solution for clustered wireless sensor networks. In Proceedings
of the International Conference on Multi-Agent Systems. Washington, DC.

CHAKI, S., RAJAMANI, S., AND REHOF, J. 2002. Types as models: Model checking message-passing
programs. In Proceedings of the 29th ACM Symposium on the Principles of Programming Lan-
guages.

CHAKRABARTI, A., DE ALFARO, L., HENZINGER, T. A., JURDZINSKI, M., AND MANG, F. Y. C. 2002. Interface
compatibility checking for software modules. In Proceedings of the 14th International Conference
on Computer-Aided Verification (CAV). Lecture Notes in Computer Science, vol. 2404. Springer
Verlag, 428–441.

CHAKRABARTI, A., DE ALFARO, L., HENZINGER, T. A., AND STOELINGA, M. 2003. Resource interfaces.
In Proceedings of the 3rd International Conference on Embedded Software. Lecture Notes in
Computer Science, vol. 2855. Springer Verlag, New York.

CHANG, H., COOKE, L., HUNT, M., MARTIN, G., MCNELLY, A. J., AND TODD, L. 1999. Surviving the SOC
Revolution. A Guide to Platform-Based Design. Kluwer Academic Publishers, Norwell, Mass.

CHARIKAR, M. AND KARAGIOZOVA, A. 2005. On non-uniform multicommodity buy-at-bulk network
design. In STOC ’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing.
ACM Press, New York, 176–182.

DALLY, W. J. AND TOWLES, B. 2001. Route packets, not wires: On-Chip interconnection networks.
In Proceedings of the Design Automation Conference. Las Vegas, Nev., 684–689.

DE ALFARO, L. AND HENZINGER, T. A. 2001. Interface theories for component-based design. In Pro-
ceedings of the 1st International Workshop on Embedded Software. Lecture Notes in Computer
Science vol. 2211, Springer Verlag, 148–165.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



562 • A. Pinto et al.

ERNST, R., HENKEL, J., AND BENNER, T. 1993. Hardware-software cosynthesis for microcontrollers.
IEEE Des. Test 10, 4, 64–75.

FERRARI, A. AND SANGIOVANNI-VINCENTELLI, A. L. 1999. System design: Traditional concepts and
new paradigms. In Proceedings of the 1999 IEEE International Conference on Computer Design.
IEEE Computer Society, Washington, DC.

GAJSKI, D., VAHID, F., NARAYAN, S., AND GONG, J. 1998. Specsyn: An environment supporting the
specify-explorerefine paradigm for hardware/software system design. IEEE Trans. VLSI 6, 1,
84–100.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman and Company.

GASTEIER, M. AND GLESNER, M. 1998. Generation of interconnect topologies for communication
synthesis. In DATE ’98: Proceedings of the Conference on Design, Automation and Test in Europe.
IEEE Computer Society, Washington, DC, 36–43.

GUPTA, R. K. AND MICHELLI, G. D. 1993. Hardware-software cosynthesis for digital systems. IEEE
Des. Test Comput. (Sept.), 29–41.

HU, J., DENG, Y., AND MARCULESCU, R. 2002. System-Level point-to-point communication synthe-
sis using floorplanning information. In Proceedings of the Asia South Pacific Design Automa-
tion/VLSI Design Conference.

HU, J. AND MARCULESCU, R. 2003. Energy-Aware mapping for tile-based NOC architectures un-
der performance constraints. In Proceedings of the Asia and South Pacific Design Automation
Conference.

HU, J. AND MARCULESCU, R. 2004. Dyad: Smart routing for networks-on-chip. In Proceedings of the
41st Annual Conference on Design Automation. ACM Press, New York, 260–263.

LAHIRI, K., RAGHUNANTHAN, A., LAKSHMINARAYANA, G., AND DEY, S. 2004. Design of high-performance
system-on-chips using communication architecutre tuners. IEEE Trans. CAD 23, 5, 620–636.

LI, Y. AND WOLF, W. 1998. Hardware/Software co-synthesis with memory hierarchies. In ICCAD
’98: Proceedings of the 1998 IEEE/ACM International Conference on Computer-Aided Design.
ACM Press, New York, 430–436.

MURALI, S. AND MICHELI, G. D. 2004. Sunmap: A tool for automatic topology selection and genera-
tion for NOCS. In Proceedings of the 41st Annual Conference on Design Automation. ACM Press,
New York, 914–919.

ORTEGA, R. B. AND BORRIELLO, G. 1998. Communication synthesis for distributed embedded sys-
tems. In ICCAD ’98: Proceedings of the 1998 IEEE/ACM International Conference on Computer-
Aided Design. ACM Press, New York, 437–444.

PASSERONE, R. 2004. Semantic foundations for heterogeneous systems. Ph.D. thesis, University
of California, Berkeley.

PASSERONE, R., DE ALFARO, L., HENZINGER, T. A., AND SANGIOVANNI-VINCENTELLI, A. L. 2002. Convert-
ibility verification and converter synthesis: Two faces of the same coin. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design.

PASSERONE, R., ROWSON, J. A., AND SANGIOVANNI-VINCENTELLI, A. L. 1998. Automatic synthesis of
interfaces between incompatible protocols. In Proceedings of the Design Automation Conference,
San Francisco, Calif.

PINTO, A., CARLONI, L. P., AND SANGIOVANNI-VINCENTELLI, A. L. 2002. Constraint-Driven communi-
cation synthesis. In DAC ’02: Proceedings of the 39th Conference on Design Automation. ACM
Press, New York, 783–788.

PINTO, A., CARLONI, L. P., AND SANGIOVANNI-VINCENTELLI, A. L. 2003. Efficient synthesis of networks
on chip. In Proceedings of the 21st International Conference on Computer Design, 5.

POLASTRE, J., HUI, J., LEVIS, P., ZHAO, J., D. CULLER, S. S., AND STOICA, I. 2005. A unified link abstrac-
tion for wireless sensor networks. In Proceedings of the 3rd International Conference Embedded
Networked Sensor Systems.

PRAKASH, S. AND PARKER, A. C. 1992. Synthesis of application-specific heterogeneous multiproces-
sor systems (abstract). In Proceedings of the 19th Annual International Symposium on Computer
Architecture. ACM Press, New York, 434.

RHODES, D. L. AND WOLF, W. 1999. Co-Synthesis of heterogeneous multiprocessor systems using
arbitrated communication. In Proceedings of the 1999 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, Piscataway, NJ, 339–342.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.



System Level Design Paradigms • 563

ROWSON, J. A. AND SANGIOVANNI-VINCENTELLI, A. 1997a. Interface-Based design. In Proceedings of
the Design Automation Conference.

ROWSON, J. A. AND SANGIOVANNI-VINCENTELLI, A. L. 1997b. Interface-Based design. In Proceedings
of the 34th Design Automation Conference, 178–183.

SGROI, M., SHEETS, M., MIHAL, A., KEUTZER, K., MALIK, S., RABAEY, J., AND SANGIOVANNI-VINCENTELLI,
A. 2001. Addressing the system-on-a-chip interconnect woes through communication-based
design. In Proceedings of the Design Automation Conference.

SGROI, M., WOLISZ, A., SANGIOVANNI-VINCENTELLI, A., AND RABAEY, J. 2004. A service-based universal
application interface for ad-hoc wireless sensor networks. In Whitepaper, U.C. Berkeley.

SHIMIZU, K. AND DILL, D. L. 2002. Deriving a simulation input generator and a coverage metric
from a formal specification. In Proceedings of the Design Automation Conference. New Orleans,
La.

SRINIVASAN, K., CHATHA, K. S., AND KONJEVOD, G. 2004. Linear programming based techniques for
synthesis of network-on-chip architectures. In Proceedings of the IEEE International Conference
on Computer Design, 422–429.

VAZIRANI, V. 2003. Approximation Algorithms. Springer Verlag, Berlin.
VINCENTELLI, A. S. 2002. Defining platform-based design. EEDesign of EETimes.
WANG, H., PEH, L.-S., AND MALIK, S. 2005. A technology-aware and energy-oriented topology ex-

ploration for on-chip networks. In Proceedings of the Design Automation and Test in Europe
Conference, 1238–1243.

WANG, H.-S., ZHU, X., PEH, L.-S., AND MALIK, S. 2002. Orion: A power-performance simulator for
interconnection networks. In Proceedings of the 35th Annual ACM/IEEE International Sympo-
sium on Microarchitecture. IEEE Computer Society Press, Los Alamitos, Calif., 294–305.

WYNANTS, C. 2001. Network Synthesis Problems. Kluwer Academic, Hingham, Mass.
YEN, T.-Y. AND WOLF, W. 1995. Communication synthesis for distributed embedded systems. In

ICCAD ’95: Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided
Design. IEEE Computer Society, Washington, DC, 288–294.

YU, Y., HONG, B., AND PRASANNA, V. 2005. Communication models for algorithm design in wireless
sensor networks. In Proceedings of the IEEE International Parallel and Distributed Processing,
Symposium.

Received February 2006; accepted May 2006

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 3, July 2006.


