
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220094156

An Overview of Embedded System Design Education at Berkeley

Article in ACM Transactions on Embedded Computing Systems · August 2005

DOI: 10.1145/1086519.1086521 · Source: DBLP

CITATIONS

49
READS

397

2 authors:

Some of the authors of this publication are also working on these related projects:

Automotive Functional Safety View project

Automotive Control View project

Alberto L. Sangiovanni-Vincentelli

University of California, Berkeley

1,020 PUBLICATIONS 40,640 CITATIONS

SEE PROFILE

Alessandro Pinto

United Technologies Research Center

62 PUBLICATIONS 1,284 CITATIONS

SEE PROFILE

All content following this page was uploaded by Alberto L. Sangiovanni-Vincentelli on 17 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220094156_An_Overview_of_Embedded_System_Design_Education_at_Berkeley?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220094156_An_Overview_of_Embedded_System_Design_Education_at_Berkeley?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Automotive-Functional-Safety?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Automotive-Control?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto-Sangiovanni-Vincentelli?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto-Sangiovanni-Vincentelli?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-California-Berkeley?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto-Sangiovanni-Vincentelli?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alessandro-Pinto-4?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alessandro-Pinto-4?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/United_Technologies_Research_Center?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alessandro-Pinto-4?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alberto-Sangiovanni-Vincentelli?enrichId=rgreq-2f7f00b36bbc62aa851079ae7072e17e-XXX&enrichSource=Y292ZXJQYWdlOzIyMDA5NDE1NjtBUzo5NzcwNTU3MzQ4NjU5NkAxNDAwMzA2MjMyMTMw&el=1_x_10&_esc=publicationCoverPdf

An Overview of Embedded System Design
Education at Berkeley

ALBERTO L. SANGIOVANNI-VINCENTELLI and ALESSANDRO PINTO
University of California, Berkeley

Embedded systems have been a traditional area of strength in the research agenda of the Univer-
sity of California at Berkeley. In parallel to this effort, a pattern of graduate and undergraduate
classes has emerged that is the result of a distillation process of the research results. In this paper,
we present the considerations that are driving our curriculum development and we review our un-
dergraduate and graduate program. In particular, we describe in detail a graduate class (EECS249:
Design of Embedded Systems: Modeling, Validation and Synthesis) that has been taught for six
years. A common feature of our education agenda is the search for fundamentals of embedded
system science rather than embedded system design techniques, an approach that today is rather
unique.

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer and Informa-
tion Science Education—Curriculum

General Terms: Design, Standardization, Theory, Verification

Additional Key Words and Phrases: Graduate and undergraduate education, embedded systems,
embedded software, functional design, architectural design, sourcework

1. INTRODUCTION

Embedded systems have been a strong research area for the University of
California at Berkeley. We will briefly review this intense research activity
as a preamble to present the Berkeley effort in embedded system education
that is intimately related to the research program.

The research activities on embedded systems at Berkeley can be cast in a
matrix organization (see Figure 1) where vertical research areas cover applica-
tion domains, such as automotive, avionics, energy, and industrial control; hor-
izontal areas cover enabling technologies such as Integrated Circuits, Sensors,
Wireless Networks, Operating Systems, Embedded Software, Automatic Con-
trol, Design Methodologies, and Tools. The important aspect of our approach is

Authors’ addresses: Department of EECS, University of California, Berkeley, Berkeley, California
94720; email: {alberto,apinto}@eecs.berkeley.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1539-9087/05/0800-0472 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005, Pages 472–499.

Embedded System Design Education at Berkeley • 473

Fig. 1. Research activities on embedded systems at berkeley.

that the enabling technologies, are explicitly linked to the vertical application
areas and are geared toward the embedded system domain.

At Berkeley, we have traditionally based our research programs on a strong
interaction with industry and collaboration among faculty in different disci-
plines; embedded system research is no exception.

Among embedded system application domains, automotive has been an area
of interest for many years. The PATH project [PATH] of CALTRANS (California
Transportation Department) has been a test bed to develop new concepts in
control of distributed systems, modeling, tools, and methodologies with a strong
experimental part and an intense interaction with industry. The automotive
emphasis of our design methodology work dates back to 1988 when a joint
program on formal approaches to embedded controller design with Magneti
Marelli for their Formula one robotized gear shift for Ferrari began. In the
automotive domain, there has also been strong interdepartmental interaction
between mechanical engineering and electrical engineering/computer science.

In U.S. universities, bottom-up aggregation of interests and approaches to ed-
ucation is more common than top-down planning. Hence, education initiatives
in novel areas almost always begin with advanced graduate course offerings
to migrate toward coordinated graduate programs and eventually into under-
graduate courses. Thus, it is no wonder that course offering in Berkeley on
embedded systems has been strong for years in the advanced course series (the
EE and CS 290 series) that are related to faculty research activities. One such
course has migrated to a regular offering in the graduate program—(EECS249:
Embedded System Design: Modeling, Analysis and Synthesis)—the main topic
of this paper.

The guiding principle in our teaching and research agenda related to embed-
ded systems is to bring closer together system theory and computer science. The

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

474 • A. L. Sangiovanni-Vincentelli and A. Pinto

two fields have drifted apart for years while we believe that the core of embed-
ded systems intended as an engineering discipline lies in the marriage of the
two approaches. While computer science traditionally deals with abstractions
where the physical world has been carefully and artfully hidden to facilitate
the development of application software, system theory deals with the physical
foundations of engineering where quantities such as time, power, and size play
a fundamental role in the models upon which this theory is based. The issue
then is how to harmonize the physical view of systems with the abstractions
that have been so useful in developing the CS intellectual agenda. We argue
that a novel system theory is needed that, at the same, time is computational
and physical. The basis of this theory cannot be but a set of novel abstractions
that partially expose the physical reality to the higher levels and methods to
manipulate the abstractions and link them in a coherent whole. The research
community is indeed developing some of the necessary results to build this
novel system theory. We believe it is time to inject these findings in the teach-
ing infrastructure so that students can be exposed to this new way of thinking
that should advance the state of embedded system design to a point where reli-
able and secure distributed systems can be designed quickly, inexpensively and
error free.

The paper presents the guiding principles we have followed in our education
effort and the set of courses offered that have direct relevance to the field of
embedded system design. We list only the courses whose embedded system
content is explicitly addressed. Otherwise, we may end up with a comprehensive
list of all courses offered in engineering (except maybe a few) as today electronic
system design is almost a synonym with embedded system design. In particular,
we present first (Section 2) the graduate program: we zoom in on EECS249 and
then we briefly review a set of advanced topical courses on embedded systems.
In Section 3, we present an overview of our undergraduate program centered
on a sophomore core course1 (EECS20N [Lee 2000; Lee and Varaiya 2000]) that
has been now offered over the past 5 years. This course for EE and CS students
addresses mathematical modeling of signals and systems from a computational
perspective. This reflects an effort of Berkeley faculty to set new foundations
for the education in electrical engineering that is based on fundamentals rather
than application domains. In this section, we also offer a view on our programs
for the near future to address specifically embedded systems at the junior and
senior level. In Section 4, we offer concluding remarks that could be of use for
setting up a graduate or advanced undergraduate class in embedded system
design in other institutions.

2. THE GRADUATE PROGRAM PART 1: EECS249 DESIGN OF EMBEDDED
SYSTEMS: MODELS, VALIDATION, AND SYNTHESIS

This course [EE249] is part of the “regular” graduate program in EECS.
It is taken by first-year graduate students as well as by senior graduate
students in EECS and other departments such as mechanical, nuclear, and
civil engineering.

1A core course is a required course for the educational programs offered by the department.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 475

The idea of the course is to emphasize the commonality among the variety
of application fields and to use a design methodology as the unified frame-
work where the topics of the course are embedded. In this way, the variety
of the advanced courses offered in our curriculum benefits from the founda-
tions laid out by EECS249. The course is rather unique as it aims at bringing
together the behavioral aspects of embedded system design with implemen-
tation within a rigorous as possible mathematical framework. Behavior cap-
ture, verification, and transformation are taught using the concepts pioneered
by Edward Lee associated to models of computation. The implementation de-
sign is seen as a companion to the behavioral design as opposed to a more
traditional academic view where implementation follows in a top-down fash-
ion behavioral design. We adopt the view presented in Sangiovanni-Vincentelli
2002 and Sangiovanni-Vincentelli et al. 2004 to provide the intellectual back-
ground. In this methodology, the design proceeds by refinement steps where
the mapping of behavior into “architecture” is the step to move to the next
level of abstraction. Using this view, embedded software design is the process
of mapping a particular behavior on a computing platform. By the same token,
the choice of a particular distributed architecture due to geographical distribu-
tion or to performance optimization is handled in a unified way. The choice of
components including reconfigurable and programmable parts is the result of
architectural space exploration where cost functions and constraints guide the
search.

From this brief overview, it should be clear that our motivation is to bring
out the fundamental issues and the formalization that enables verification and
synthesis at a level that would not be otherwise possible. This particular aspect
should be seen as the quest for a new system science that serves as a framework
to teach design that transcends the traditional discipline boundaries.

Given the large scope of the course, it has a heavy load; four contact hours
and two lab hours per week. The contact hours are broken into traditional
lectures and discussion of papers presented by the students. The verification of
the learning process is left to weekly homework that are a mix of exercises and
of theory, and to a final project that is fairly advanced, so much so that often the
project reports see the light in the community as conference or journal papers.

The contents and the organization of the class has been the result of a number
of advanced courses in hybrid systems and system level design that date back
to 1991, when the first such class was taught.

2.1 Organization of the Class

The basic tenet of the methodology that forms the skeleton of the class is or-
thogonalization of concerns, and, in particular, separation of function and archi-
tecture, computation, and communication. This methodology, called platform-
based design, is presented as a paradigm that incorporates these principles
and spans the entire design process, from system-level specification to detailed
implementation. We place particular emphasis on the analysis and optimiza-
tion of the highest levels of abstraction of the design where all the important
algorithmic and architectural decisions are taken.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

476 • A. L. Sangiovanni-Vincentelli and A. Pinto

The course has four main parts.

1. After a presentation of the motivation for the class extracted from a variety
of examples in different industrial domains, we introduce the methodology
followed (Platform-Based Design [Sangiovanni-Vincentelli 2002]) and exam-
ples of its applications.

2. The notion of behavior is analyzed and the role of nondeterminism in spec-
ification is explained. We present the basic models of computation that are
needed to represent the behavior of most designs: Finite-State Machines,
Synchronous Languages, Data Flow Networks, Petri Nets, Discrete Event
Systems and Hybrid Systems. We outline the use of a unified framework to
compare the different models of computation and we present the Tagged-
Signal Model (TSM) [Lee and Sangiovanni-Vincentelli 1998] as a unifying
theory to allow the composition of different models of computation to de-
scribe a complete system. We introduce here the Ptolemy [PtolemyII] and
Metropolis [Balarin et al. 2003] environments for analysis and simulation
of heterogeneous specifications.

3. We then introduce the notion of architecture as a set of components (in-
terconnections for communication and building blocks that are capable of
carrying out computation) that are providing services to the behavior that
we wish to implement. Optimal architecture choice is presented as the se-
lection of a particular set of computational blocks in a library of available
components and of their interconnection. The evaluation of the quality of a
selected architecture is based on a mapping process of behavior to the com-
putation blocks, including programmable components. The mapping process
should be accompanied by an estimate of the performance of the design once
mapped onto the architecture. Communication representation is illustrated.
The representation of architectures in the Metropolis and Mescal [Mescal]
environments are presented.

4. Embedded software design is considered as part of the mapping process. In
this context, we review the approaches followed to estimate physical quanti-
ties such as time and power for embedded software. We present scheduling
as a way of mapping concurrent processes in a resource limited architecture
and we address the characteristics of real-time operating systems. We review
code generation techniques used in widely used industrial tools such as Real
Time Workshop and Target Link. We present software synthesis approaches
that exploit the mathematical properties of the design. We also address the
problem of synthesizing communication structures given the system level
requirements. The different coordination policies used at different levels of
abstraction are introduced with particular emphasis on the desynchroniza-
tion paradigm where a synchronous specification is mapped onto an asyn-
chronous implementation that is guaranteed functionally equivalent to the
specification.

Since we believe that design methods without applications are easily forgot-
ten and not well assimilated, application examples are drawn from the multi-
media and the automotive industrial sectors.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 477

The class is complemented with discussion sessions and labs. Discussion is
important to bring up questions on specific topics for which deep understanding
of the general concepts is required. Labs are used to demonstrate how the theory
can be applied to build tools and design flows and how the flows can be used to
do real designs.

Students are required to work on a project from the beginning to the end of
the class. A group of mentors follow the students who consequently are exposed
to advanced research topics.

A detailed description of the course follows.

2.2 Week 1: Introduction and Methodology

The first two lectures serve as an introduction to the class and to the methodol-
ogy upon which the class is structured. We present many examples of embedded
systems: cars, airplanes, smart buildings, elevators, and sensor networks. All
are real industrial applications so that the students are aware of the fact that
embedded systems are not only an advanced research area but are a reality
in the industrial world that is struggling with increasing complexity, reduced
time to market, and increased competition.

In the introductory lecture, we highlight commonalities among all the exam-
ples that we present to set the stage for the philosophy of the course, which is
aimed at defining the common methods that can be used across different appli-
cation domains; the course is intended to solve “the embedded system design
problem” rather than particular instances of it.

An entire lecture is devoted to an overview of the platform-based design
principle. The method is justified by illustrating how it can be used to solve, or
at least, to formalize, design problems that are common to the entire class of
embedded systems.

2.3 Week 2–5: Function

Lectures. A function is defined as a denotational description of what a sys-
tem is supposed to do without any implementation detail. Examples of functions
from different application domains are shown to the students.

This part of the course presents several models of computation. For each
model we present the computation, communication, and coordination seman-
tics with a particular emphasis on the properties that are guaranteed and
verifiable.

The first model that we introduce is finite state machines (FSM) that, in
general, students are already somewhat familiar with. We also present an ex-
tension of FSMs to a globally asynchronous-locally synchronous (GALS) model,
the so called Codesign FSM (or CFSM) that was the basis for Polis [Balarin et al.
1997] and VCC [Martin and Salefski 1998] because of its appeal to applications
that have distributed nature.

We then present Kahn process networks (KPN) and data flow networks. A
homework assignment is given to the students who have to explore FSM and
KPN as candidates for describing control applications and multimedia or digital
signal processing applications.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

478 • A. L. Sangiovanni-Vincentelli and A. Pinto

Table I. Class Syllabus

Course Section Lectures Discussions Labs

Introduction Definition of embedded “The tides of EDA” Introduction to the
systems, examples of Metropolis meta-model
applications, challenges, language
future applications

Function Finite state machines,
Codesign finite state
machines, Kahn process
networks and data flow,
Tagged signal model,
Agent algebras, Petri
nets, Synchronous
languages and
desynchronization.

StateCharts,
Data flow with firings
Desynchronization

Introduction to PtolemyII
Building a model of

computation in
Metropolis, Esterel.

Architecture Performances, Architecture
modeling, Modeling
concurrency: Scheduling,
Interconnection
architectures,
Reconfigurable
platforms,
Programmable
platforms, Fault tolerant
architectures.

Formal modeling of
processors, Rate
monotonic
hyperbolic bound,
Interface synthesis

Modeling architectures in
Metropolis

Xilinx, PSoC

Mapping Mapping specification,
Design exploration,
Software estimation, and
synthesis, Static
analysis, Quasi static
scheduling.

Synthesis of software
from CFSMs
specification

Virtual component
codesign

Mathworks RTW, dSpace
Target Link

After these two examples, we motivate the introduction of two frame-
works for describing heterogeneous systems, comparing models of computation
and understanding refinement and abstraction. Complex examples are shown
where a system spans multiple application domains. We use the PicoRadio
[PicoRadio] project as an example of embedded system that is distributed, has
sensors and (possibly) actuators, has digital and analog components, a protocol
stack, and a digital signal processing subsystem.

The two denotational frameworks we use in the class are: the tagged signal
model for comparing models of computation and agent algebras [Passerone
2004] for explaining abstraction and refinement and giving a meaning to the
communication between agents described in different models.

Petri nets [Murata 1989] are introduced using the frameworks and their
use for functional modeling is analyzed. Then, we dedicate a lecture to
introduce hybrid systems [Lygeros et al. 1999], i.e., a combination of contin-
uous and discrete dynamics. We present the application of hybrid systems to
model an automotive engine and to derive the appropriate control law.

TSM has been very well received by students that for the first time are
exposed to the abstract concepts of signals as sets of events, pairs of values,

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 479

and tags. Building on the student intuition of sequence of events ordered by
time stamps, we explain the more general concepts of partially ordered tags
and express the semantics of a model of computation in terms of this simple set
theoretic framework.

We then ventured in the presentation of the model of computation used in
Metropolis: the Metropolis Meta-Model (MMM). The MMM can be considered
an abstract semantics since it can accommodate a variety of models of compu-
tation that are obtained by refinement of this model. In some sense, an abstract
semantic is “incomplete” and this incompleteness is the mechanism that allows
the refinement into other models. We presented the additional constructs that
are used in Metropolis to capture the specification of a design in a declarative
style (a unique feature of Metropolis): the Language of Constraints (LOC) and
a more conventional language for logical constraint specification, LTL [Pnueli
1977]. We also presented the Ptolemy actor-oriented semantics and showed how
this is another style for abstract semantics.

Discussions. Classic papers are presented by students during the discus-
sion sessions. The first one is a comprehensive introduction to the StateCharts
syntax and semantics [Harel 1987] while the second is a paper on the properties
of data flow networks [Lee and Messerschmitt 1987] where firing rules can be
specified for each actor.

Discussions regard the meaning of a model instance and the properties that
a model guarantees. For example, StateCharts is a graphical syntax with very
few restrictions and students have to reason about the meaning of a feedback
connection. In the case of data flow networks, properties like determinacy of a
model are discussed. Students reason on the implication of this properties on
the design steps. A discussion on heterogeneous models of computation follows.

Labs. Two environments for heterogeneous modeling are presented:
Ptolemy and Metropolis. After introducing the environments, students are
guided in modeling applications using models of computation already avail-
able as libraries in these frameworks.

A lab is dedicated to the development of a model of computation library
in Metropolis. Students learn how the denotational definition of models can
be implemented with programs. They also learn to separate the computation,
communication, and coordination aspects. Using the MMM language, students
are required to build a library for modeling data flow networks. They have to
model a FIFO channel and an empty process, which can be extended by adding
the description of the process behavior.

2.4 Week 6–8: Architecture

Lectures. We present formal models for describing architectures. We first
give some examples of architectures and how they are used by system design-
ers to implement functions. In this introductory lecture the concept of mapping
a function to an architecture is presented as assignment of components of func-
tions to processing elements. This exposes the students to the problem of match-
ing two different concurrency models: the model of computation used for func-
tional description and the amount of concurrency available in the architecture

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

480 • A. L. Sangiovanni-Vincentelli and A. Pinto

that is often limited due to resource limitation. We introduce scheduling in the
first lecture as a way of “impedance” matching between funtion concurrency
and architecture concurrency.

We emphasize the communication aspect as one of the most important in ar-
chitecture development. We introduce communication-based design as a design
paradigm where computation is abstracted away and communication becomes
the main objective of the design process. The methodology is motivated by two
facts. First, embedded applications are usually distributed on networks of pro-
cessing elements and it is important to formalize the definition of protocols and
scheduling of communication resources. Second, SoC platforms are assembled
from a library of available IPs meaning that the concern of a designer is not
the optimization of each core, but rather their interconnection. We present a
formal definition of the communication problem using the tagged signal model
framework that explains the communication phenomena as a restriction of the
behaviors of the connected processes.

Discussions. While the majority of discussion sessions in the first part of the
course are theoretical digressions on models of computation, discussions on ar-
chitectures are more practical and deal with specialized solution to distributed
systems design, scheduling policies, on-chip networking, programmable plat-
forms, and languages for architectural description.

The first set of papers show how processors can be modeled and how their
performances can be abstracted. The Language for Instruction Set Architec-
tures (LISA) [Zivojnovic et al. 1996] is first presented to give the students some
basic intuitions of the main features that a microprocessor model should have.
LISATek is also shown as the industrial set of tools that can simulate a de-
scription of a processor and generate the compilation tool chain in an automatic
way. A modeling approach using Petri Nets is then presented, which gives an
intuition of how models of computation can be used for modeling architectural
components.

The second set of papers focuses on communication architectures. We discuss
standard communication architectures, like busses and crossbars, and show
the problems that are encountered when using these approaches in current
systems on chip. The students also present a set of papers on networks on
chip that has been proposed as a solution to such problems. We then deal with
specialized protocols for on chip communication, like the latency insensitive
protocol [Carloni 2004].

Labs. During lab sessions, students are guided toward developing mod-
els for different parts of an architecture: computation and communication
components.

We first show the Liberty Simulation Environment [Liberty; Vachharajani
et al. 2004] and how it can be used to model behavior, performances, and costs
of a microprocessor.

We then teach students to develop models of architecture components using
the Metropolis environment. During this lab, students are divided in groups
and each group develops a simple model of an assigned IP. Those models are
then collaboratively integrated into a model of a complete architecture.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 481

Finally, we show a practical example of an architecture platform. We recently
introduced the Xilinx VirtexII Pro as an example of heterogeneous platform
that can be used for fast prototyping. The purpose of the lab is to introduce a
platform that has hardware, software, and communication components, which
can be composed in many ways. It is also the platform that will be used to show
how an implementation can be automatically derived as a successive refinement
of the original specification using suitable synthesis tools.

2.5 Week 9–11: Mapping

Lectures. Mapping functions to architectures is possibly the most relevant
aspect of the platform-based design methodology taught in this class. The
power of the MMM is evident here where the use of the same modeling con-
structs for function and architecture allows a particularly efficient way of per-
forming mapping and analyzing the quality of the result. In particular, we
first show how to put a function in relation to the supporting architecture.
By using the MMM notion of events, we show how the function netlist can
be placed in correspondence with the architecture netlist by introducing the
so-called mapping netlist. In this way, events in the functional netlist trig-
ger events in the architecture netlist via the mapping netlist. We show how
the mechanism can be exploited to change the mapping of function to archi-
tecture elements in a straightforward manner that does not require rewrit-
ing the architectural and functional description. We present the scheduling
problem as an essential part of the allocation of functionality to shared re-
sources. In this respect, we review the fundamental results of the scheduling
literature.

We then show how mapped functions can be simulated and how the perfor-
mance of the mapping can be extracted. At this point, we introduce the notion
of quantity managers as tools that compute quantities, such as power and time,
used by architectural components when executing the part of the functional-
ity mapped onto them. This mechanism allows evaluation of the quality of
the mapping and provides important information about bottlenecks in the de-
sign. The feedback provided to the designer can be used to modify the mapping
by changing assignments of functionality to architectural elements to modify
architectures by adding or changing elements and to modify functionality by
repartitioning or eliminating components.

Finally, we present mechanisms to feed quantity managers information
about the basic execution “costs” (e.g., power and time) and we show examples
drawn from Xilinx programmable platforms [Xilinx] and from other platforms,
such as the Intel MXP5800.

Discussions. A crucial aspect of the mapping process is the scheduling of
functional process on shared resources. The first paper is the classical paper on
scheduling by Liu and Layland [Liu and Layland 1973]. Students discuss the
complexity of the scheduling problem and the implication of the assumptions
that are made in this paper. On the same topic, students present more recent
results on real-time scheduling and, in particular, an hyperbolic bound on the
processor utilization.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

482 • A. L. Sangiovanni-Vincentelli and A. Pinto

The following set of papers deals with recent approaches of mapping an
application on a platform of processing elements interconnected by a regular
network. This discussion focuses on the definition of an objective function to op-
timize during the mapping process. The cost of the communication architecture
is the power it consumes and an optimal mapping is computed as the solution
of an optimization problem subject to communication constraints.

Discussions are used to give practical examples of how the matching of per-
formance abstraction and constraints propagation can be cast into optimization
problems.

Labs. The two tools presented in the lab sessions are the Virtual Compo-
nent Co-design (VCC) from Cadence and Metropolis. In the approach followed
by VCC, mapping is the assignment of pieces of functions to architectural com-
ponents. In the Metropolis framework, mapping is implemented as intersection
of the function and architecture execution in a common domain, which serves
as common refinement.

2.6 Weeks 12–14: Verification and Synthesis

Lectures. We review the notions of verification and synthesis and present
how verification is not a synonym of simulation but contains static analysis tools
as well as formal verification. In particular, we discuss the notion of successive
refinement as the process used in the PBD methodology to go from specification
to final implementation. We demonstrate the use of the MMM to maintain the
same environment of both the more abstract and the more concrete represen-
tation to simplify the use of refinement verification techniques. We also show
the simulation approach followed in the Metropolis environment to reduce or
even eliminate the overhead that comes with the flexibility of maintaining both
architecture and functionality present as separate entities of the design.

Then, we focus on the methods available in literature for software estimation,
an important component of any verification methodology that mixes hardware
and software implementations. The approach by Malik [Li and Malik 1995]
is first introduced for static analysis of programs based on pipeline and cache
modeling and integer linear programming followed by the abstract interpre-
tation work of Wilhelm that yielded the well-known analysis program AbsInt
[Ferdinand and Wilhelm 1998].

We then move to the software synthesis problem and present the model-
based design approach where code is automatically generated from mathemat-
ical models. After reviewing shortly Real Time Workshop of MathWorks, we
discuss a different way of generating code from models that follows the same
paradigm used in hardware synthesis of optimizing the original description
(software representation) before mapping it onto a given execution platform.
In this case, we show that we have a “technology-independent” phase followed
by technology mapping. We show how Esterel [Berry and Gonthier 1992] is
compiled using this idea and using FSM optimization techniques based on
MIS [Brayton et al. 1987] originally developed at Berkeley for logic synthesis
to generate implementation code. We then present another method to optimize
the original description based on the Ordered Binary Decision Diagram [Bryant

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 483

1986] representation of programs. We show how to use the variable ordering
methods developed to manipulate OBDDs in logic synthesis to generate efficient
programs from Co-Design Finite State Machines [Balarin et al. 1999].

We also present evaluation techniques to compute the time taken by syn-
thesized programs to execute on a given platform that are used to guide the
optimization search. These techniques are shown to be accurate when the soft-
ware is automatically synthesized. We then move to the problem of optimizing
code for data flow dominated applications with limited data-dependent con-
trol. We show also how operating system features such as hardware-software
communication mechanisms and scheduling policies can be synthesized from
requirements [Balarin et al. 1997; Giotto] and we point to the evolution of im-
plementation platforms that can make the optimized “compilation” problem
increasingly difficult.

Discussions. Most of the papers that we discuss in this part of the course
are about synthesis. Students are exposed to recent approaches to software
synthesis and the difference between synthesis and compilation. We start with
a discussion on the Polis approach to software synthesis emphasizing why it is
suitable for control applications and not for signal processing. In the discussion,
we emphasize what are the implications of having a formal model (CFSM) of
computation on the solution of the synthesis problem.

Then we move from the control domain to the synthesis of software for digital
signal processing applications. The synthesis algorithm starts from a dataflow
model and generates code that can be optimized for a specific processor. We
highlight the difference between control and digital signal processing applica-
tions: the description that we start from has different assumptions (different
models of computations) and also the target platforms are different.

Labs. We present two industrial tools for automatic code generation: the
real-time workshop (RTW) [Mathworks] by Mathworks and Targetlink [dSpace]
by dSPACE.

One lab presents the xGiotto [Giotto] approach to software synthesis and
verification. xGiotto starts from the description of a program in a language
with a formal semantics and is able to perform analysis like schedulability
and race condition detection. Once a program has been verified, code can be
automatically generated for a target platform.

2.7 Week 15: Applications and Summary

The last week of the course is dedicated to placing the material presented in
perspective. An application such as automotive control is used to show the com-
plete flow from modeling the functionality with hybrid systems to mapping onto
execution platforms that are modified according to the results of the analysis.
We had in mind to use Metropolis and x-Giotto as well as the Xilinx back-end
to show a complete design flow in action. However, the tools were not mature
at the time we taught the course and the flow could not be demonstrated. Next
year we are confident we will be able to show the entire flow to students and
have them play with it in more than one application. We find this summary

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

484 • A. L. Sangiovanni-Vincentelli and A. Pinto

particularly useful as the course is loaded with material and it is understand-
able that the students may loose track of the overall vision that we try to convey.
The feedback given during the last few years has been consistently good and
encouraging.

Another application space that we explored is wireless sensor networks
where our view of design leads naturally to the definition of layers of abstrac-
tion that identify clearly the need of a “middleware” that can well capture the
performance of a particular physical implementation of the network to offer the
application programmer an abstraction that enables reuse across different im-
plementations with appropriate abstract analysis of the effects of the physical
network on the application program.

After the end of the course, the projects that are used to evaluate the students,
are presented in front of the entire class to open a wide range discussion among
students, teaching assistant, mentors, and faculty on the results and the ideas
on how to improve the course.

2.8 Projects

The course is graded on the basis of a set of homework and on a final project.
After the first week of class, a list of project proposals is given to the students.
We rely on a group of highly qualified mentors from industry and academia that
help the students in reviewing previous work and conducting the research to
complete their projects on time. We push students to start as early as possible
and we motivate them by mentioning the possibility of submitting for the best
reports for publication.

Table II gives an idea of the projects that have been carried out since 1998.
Following the course organization, the table is divided in projects that are re-
lated to functional description, architectural description, and mapping. We also
added two columns for projects that cross all of the three main sections of the
course: case studies and design methodologies.

The choices of students are often concentrated on the definition of formal
models for describing a function and on the development of algorithms for
verification and synthesis. The case studies were mainly developed by stu-
dents coming from departments other than EECS that are interested in study-
ing how the methodology can be applied to solve specific design problems.
Given the shortness of available time, it is not possible, in general, for stu-
dents to develop and show the effectiveness of a complete design methodol-
ogy for a specific application domain. This is the reason why these kind of
projects are rarely taken even though a couple were chosen and had worthwhile
results.

Few projects were given on architecture. This situation reflects the status
of our research in the field that only recently has taken an important turn,
determined by the extensive introduction of the use of the MMM and of the
characterization work carried out in conjunction with the Xilinx project. We
expect that more projects on this subject will be proposed in the future, par-
ticularly in the area of syntax and semantics of languages for architectural
description and automatic verification and refinement tools for architectures.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 485

Table II. Examples of Projects

Design
Function Architecture Mapping and tools Case Studies Methodologies

—Time-Based
Communication
Refinement for
CFSMs

—Reconfigurable
architecture
exploration
[Baleani et al.
2002]

—Hybrid Systems
Verification

—Efficient
low-power
network
discovery
algorithm for
wireless
embedded
sensor net-
works [KooHen-
zinger et al.
2003]

—Synchronous
platform
based design
of unmanned
aerial vehi-
cle [Horowitz
et al. 2003]

—Heterochronous
dataflow domain
in Ptolemy II

—Modeling and
refinement of a
simple
microprocessor
using YAPI

—Protocol
Converter
Synthesis

—Pupil detection
and tracking
system [Zimet
et al. 2004]

—Hardware
extension to
ECL

—Task response
time
optimization
using
cost-based
operation
motion

—Multi-injection
driver
specification for
engine
management

—Extending
CFSMs to allow
multirate
operations

—Communication
architecture
synthesis [Pinto
et al. 2002]

—Microcode
compression for
embedded
processors

—Real-time
distributed
fault tolerant
scheduling:
timing analysis

—Metropolis
SystemC
simulator

—Hybrid systems
simulation in
PtolemyII

As the citations in Table II show, a fair amount of projects led to publications
in important journals and conference proceedings.

3. THE GRADUATE PROGRAM PART 2: ADVANCED GRADUATE COURSES

Advanced courses are an important feature of the Berkeley graduate program.
These courses reflect very recent advances in the state of the art of a particular
knowledge domain. They are topical courses; their content changes from year to

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

486 • A. L. Sangiovanni-Vincentelli and A. Pinto

Fig. 2. A graduate program in embedded systems.

year and can be taken by students multiple times. In general, they are taken by
PhD students who are interested in research topics in the area covered by the
course. Regular graduate courses are often derived from the advanced series
after the content has stabilized and there is enough interest from the student
population. Since embedded systems are so important in our research agenda,
there are several advanced courses that have a direct relationship with the
topics of this paper. These courses are labeled EE290 and CS294 followed by a
letter indicating the area these courses belong to.

In Figure 2, we show a the backbone of a graduate program in embedded
systems that traverses the courses presented in this paper. A well thought out
course program in embedded systems should include domain-specific courses
that provide the reference framework for the students to be productive in the
outside world.

3.1 Computer Science Courses

The Computer Science Division of our Department offers a graduate-level
class on embedded network and mobile computing platforms. The course is
“CS294-1.” As is always the case for advanced graduate classes that belong ei-
ther to the EE290 series or the CS294 series, its content changes every semester.

In the last five years, this course has always been centered around applica-
tions that are embedded in the environment with which they interact.

Deeply Embedded Network Systems. This advanced class focuses on ubiq-
uitous computing [CS294]. It is based on the experience of researchers from
different universities on wireless sensor networks.

The schedule of the class starts with an introduction to the emerging comput-
ing platforms composed of a large number of simple nodes communicating on
wireless channels. Habitat-monitoring applications are taken as representative
of embedded networks of nodes that can sense and communicate. The design of
the embedded network is driven by the application that sets the requirements

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 487

to satisfy. After the introduction, 1 week is dedicated to the presentation of
several platforms and operating systems that are currently available.

The following 4 weeks of the class give an overview of all the proposed pro-
tocols for wireless sensor networks: network discovery, topology information,
aggregation, broadcast, and routing. The design of all these protocols takes
into account the constraints imposed by the application. The class puts a lot of
emphasis on power consumption, since nodes cannot be replaced.

The second part of the class gives directions for the implementation and de-
ployment of these networks. Two weeks are devoted to the problems arising
from the distributed nature of the applications. In particular, distributed stor-
age of information and distributed control are presented as important research
areas. Finally, privacy is considered as a potential problem, since embedded
networks have the capability of monitoring every object in the environment in
which they are embedded.

Students in the class are divided into groups and each of them works on
a project. Possible topics range from programming models and simulations of
large-scale networks to new protocols for routing and localization. In Fall 2003,
a considerable number of projects investigated the problem of programming
the network starting from the description of the application.

Mobile Computing and Wireless Networking. The level of abstraction of the
networks considered in this class is much higher than the one considered in the
previous section. The focus is on new trends in mobile computing and integra-
tion of heterogeneous networks [CS294w].

The class presents challenges in mobile computing where the end user is a
person that uses a device to be constantly connected to the rest of the world.
The requirements on the protocol implementation are derived by looking at
the issues that mobility brings up: routing, network registration, and security.
Some protocols that solve all these problems are presented.

A network node is an handheld device that presents severe limitations
in power consumption. This problem, which is presented as an important
constraint, presents some commonality with wireless sensor networks of the
deeply embedded networks class, but it is not the only one. Connectivity and
distributed information storage are also investigated and some solutions are
presented.

Finally, some common platforms for these kind of systems, like WLAN,
UMTS, GSM and GPRS, are presented.

3.2 Advanced Electrical Engineering Courses

The electrical engineering division of the EECS Department offers advanced
courses that are focused on formal models for system level design and embedded
software. Two classes are particularly relevant to our discussion on embedded
systems.

EE290N: Concurrent Models of Computation for Embedded Software. This
advanced class focuses on concurrent models of computation for embedded soft-
ware development [EE290N]. It can be seen as the extension to and deep

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

488 • A. L. Sangiovanni-Vincentelli and A. Pinto

analysis of the first 5 weeks of EECS249. It has been taught four different
times with contents that are converging to a unified view so that there is a plan
of making it a regular graduate course. Abstract semantics, concrete semantics,
and implementation of some of the most commonly used models are presented.
Besides homework assignments, students are required to work on a project.

The class is organized as follows:

Week 1–2. The first two lectures present the main differences between em-
bedded software and software for standard applications. In particular, threads
are formally defined and their limitations are underlined, with particular em-
phasis on the problems that arise when using this technique for developing
concurrent programs. Language for particular applications, like NesC [Gay
et al. 2003] and Lustre [Caspi et al. 1987], are then taken as representative
of domain specific models for embedded software.

Week 3–5. In this part of the class, Process Networks (PN) are used to in-
troduce a formalism that will be used in the rest of the class. First, the abstract
semantics of PN is presented together with the notion of partial ordering and
prefix ordering on sequences of events. In this abstract settings, properties like
monotonicity, continuity, and determinacy of a process are described as proper-
ties of the input–output function on streams that characterize a process. The
fixed-point semantics is also introduced when multiple processes are connected
together and loops are present in the corresponding functional graph. A con-
crete semantics is then presented and, finally, the concrete implementation of
PN semantics, following the Kahn-McQueen execution semantics, is shown by
using PtolemyII as a platform for implementing and composing models of com-
putation. The problem of bounded execution (an execution that used a bounded
amount of memory) is introduced and simulation techniques are presented.

Week 6. This week is devoted to synchronous languages. After describing
their semantics, the problem of connecting processes in a feedback configura-
tion is considered. Complete partial orders are explained to define the least
fixed-point semantics of synchronous programs. Simulation and implemen-
tation issues are presented using the PtolemyII synchronous reactive-model
implementation.

Week 7. The fixed-point semantics is presented by defining a metric on
the set of signals. The first lecture introduces the notion of tags and events as
defined in the tagged-signal model. Different kinds of metrics and metric spaces
are defined. The Cantor metric and the concept of ultrametric are introduced
as ways of measuring the distance between two signals. Finally, a fixed-point
theorem is presented that is used to define the semantics of the composition of
processes.

Week 8–10. Three weeks are devoted to the different varieties of data flow
models of computation. The first kind of data flow is called Statically Schedula-
ble Data Flow (originally defined by Edward Lee in his thesis as Synchronous
Data Flow and more recently referred to as Static Data Flow). The concept of

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 489

balance equation and scheduling of static data flow models is explained. A more
concrete execution semantics is explained as a sequence of firings of data flow
actors. Firing rules and fixed-point computation are presented. The second part
of this section presents extensions to the basic data flow model like multidimen-
sional and heterochronous data flow. The last part presents boolean data flow
networks to express data dependent flow of tokens.

Week 11. The last part of the class introduces continuous time models and
hybrid systems. The emphasis is on the semantics and the techniques that
are used to solve systems of differential equations. In particular, problems like
event detection and Zeno behaviors for hybrid systems are considered and the
impact on the simulation engine are explained.

EE290O: Embedded Software Engineering. While the previous class ex-
plores the models that should be used in developing embedded software, this
class focuses on a particular design flow. The class presents a model of compu-
tation, the Giotto model [Henzinger et al. 2003], and explains why it is suitable
for a class of embedded software [EE290O]. The class is divided into three parts:

1. RTOS Concepts. A real-time operating system is characterized by the ser-
vices that it provides: environment communication services, event triggering
services, software communication services, and software scheduling. Tasks
and threads are defined and a model for them is explained. A simple ex-
ample of an RTOS is given. In their first homework, students have to im-
plement an RTOS on the LEGO brick. The students now have a feeling
of the RTOS abstraction level and the problems in modeling software at
this level. The E-machine [Henzinger and Kirsch 2002] is then described
and its properties are formally explained: semantics of the E-machine,
portability and predictability, deterministic behavior, and logical execution
time.

2. RTOS Scheduling. Some classic scheduling algorithms are presented. First,
a task is modeled with execution time and deadline and the concept of
preemption is explained. First, the early deadline and then rate mono-
tonic scheduling are explained. The last part of this section is devoted to
schedulability tests like rate monotonic analysis (RTA) and model-based
schedulability analysis (where tasks and schedulers are modeled as timed
automata).

3. RT Communication. The last part of the class deals with real-time commu-
nication. Messages are modeled with deadline and worstcase latency. Two
protocols are presented in detail: Controller Area Network (CAN) and Time-
Triggered Protocol (TTP) [Kopetz and Grunsteidl 1994]. The problem of fault
tolerance is introduced and the solution proposed by the TTP protocol is
explained.

EE290a: Concurrent System Architectures for Applications and Implementa-
tions. This experimental class was offered in the Spring 2002. The focus of the
class is on models for concurrent applications, heterogeneous platforms, and the
mapping of the former to the latter [EE290A]. This course can be considered as

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

490 • A. L. Sangiovanni-Vincentelli and A. Pinto

a follow-on to EECS249 with respect to Architecture and Mapping. The course
is organized as follows:

Week 1–3. The first part of the class introduces the content of the course by
giving examples of applications and platforms. Several models of computation,
like finite state machines, process networks, data flow, synchronous/reactive,
communicating sequential processes, and codesign finite state machines are
introduced, emphasizing the fact that each model is particularly suitable for a
specific application domain. The Click [Shah et al. 2004] model of computation
is explained for modeling the processing of streams of packets in routers.

Week 4. During this week a set of representative applications are presented.
MPEG decoding is presented together with an entire flow from specification
(using a flavor of Kahn process networks called YAPI [de Kock et al. 2000]) to
implementation. This example shows how the requirements of an application
condition, the selection of a model of computation, and the underling imple-
mentation platform.

Week 5–7. The motivations for using programmable platforms are ex-
plained. Several platforms are then presented: the Nexperia [Nexperia] plat-
form by Philips for multimedia application and the Ixp1200 [IXP1200] platform
by Intel for network processing. For each platform, examples of what kind of
application they target are given together with performances result. In week
7, a broad overview of the available platforms for VoIp is given.

Week 8–10. This part of the class gives two examples of mapping the con-
currency of the application onto the concurrency of the platform. The Giotto
model of computation and the E-Machine are presented and an example of the
software running on an autonomous helicopter is shown. A guest lecture from
the Xilinx research group shows the implementation of an IP router on a Vir-
texII Pro FPGA and the implication of using a multithreaded implementation.
The last presentation is given by the SCORE (Stream Computations Organized
for Reconfigurable Execution) [Caspi et al. 2000] project team. In this project
both function and architecture are described using Kahn process networks. The
challenge is to find a schedule of processes for bounded execution. The architec-
ture is composed of a set of processors that communicate over a shared network.
Buffers are allocated on memory segments.

Week 11–13. The last lectures give an overview of multiprocessors plat-
forms like RAW and IWarp [Borkar et al. 1988] and other programmable plat-
forms like PSOC by Cypress and the Extensa Processor.

4. THE GRADUATE PROGRAM PART 3: CIVIL AND
MECHANICAL ENGINEERING

These two departments have traditionally been interested in embedded appli-
cations. They have some graduate courses where embedded topics are featured.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 491

4.1 Mechanical Engineering 230: “Real-Time Software
for Mechanical System Control”

The Mechanical Engineering Department offers a class that teaches students
how to control mechanical systems using embedded software. It is a lab-oriented
class in the sense that students are taught how to implement a controller in
Java on an embedded processor.

Even if methodology is not really the focus of this class, controlling a me-
chanical system implies understanding the continuous dynamics governing it
and the constraints that are imposed on the reaction time of the software con-
troller. The class gives an overview of the real-time control problems. Students
are exposed to Java as a technology that allows the development of real-time
systems and how complicated control algorithms can be implemented on an em-
bedded processor. This part takes one third of the entire class. This technology
is applied to the control of motors.

Students learn real-time programming through a set of labs. The first two
labs are meant to teach students how to write a control algorithm for an em-
bedded processor. The third lab show how the software world interfaces with
a physical component like a motor. In the following lab sessions, students are
guided in implementing a feedback control algorithm for a motor.

4.2 Civil and Mechanical Engineering 290I: “Civil Systems, Control and
Information Management”

The possibility of sensing the environment and communicating over a dense
network of tiny objects is of great interest for the civil engineering community.
This course starts with an introductory lecture that motivates the use of em-
bedded networks with several applications: automatic control of the BART (Bay
Area Rapid Transportation) system, earthquakes monitoring, and mesh stable
formation flight of unmanned air vehicles.

The emphasis of the class is on the formal specification of complex networked
systems. The Teja [Teja] environment is used as example of formal language to
specify systems of users and resources. Syntax and semantics of the language
are explained in the class and students are trained in using the environment
with labs and homework.

5. THE UNDERGRADUATE PROGRAM

Our approach to embedded systems has been to marry the physical and the
computational world to teach students how to reason critically about model-
ing and abstractions. Traditionally undergraduate EE courses have focused on
continuous time and detailed modeling of the physical phenomena using par-
tial and ordinary differential equations, while undergraduate CS courses have
focused on discrete representations and computational abstractions. We noted
that students then were “boxed” in this dichotomy and had problems linking the
two worlds. The intellectual agenda was to teach students how to reason about
the meaning of mathematical models, their limitations, and power. EECS20N
(Structure and Interpretation of Signals and Systems) was born with this idea
in mind.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

492 • A. L. Sangiovanni-Vincentelli and A. Pinto

Fig. 3. Pre-requisite structure for undergraduate program in systems.

EECS 20N together with EECS 40 (Introduction to Microelectronic Circuits),
CS 61A (The Structure and Interpretation of Computer Programs), CS 61B
(Data Structures), and CS 61C (Machine Structures) are mandatory courses for
any Berkeley undergraduate EECS student. In addition to having an important
role in the general undergraduate education, EECS20N (see Lee 2000; Lee and
Varaiya 2000) is also at the root of a system science program whose structure
is shown in Figure 3. In this diagram, EE149, Hybrid and Embedded Systems,
is an upper-division class that is under design and will provide the ideal follow-
on to EECS20N in a curriculum that focuses on the foundations of embedded
systems.

5.1 EECS20N: Structure and Interpretation of Signals and Systems

Motivation and History. EECS20N [EECS20N] is a course that electrical en-
gineering and computer science students take in their second year at Berkeley.
Traditionally, our undergraduates were exposed to a rigorous approach to sys-
tems in classes offered in the junior and senior year dealing with circuit theory,
communication systems, and control. The contents of the courses were thought
in terms of the application domain and exposed a certain degree of duplication,
as ordinary differential equations and transforms such as Laplace and Fourier,
were common tools. In addition, the models used were mostly continuous-time.
Little, if any, attention was paid to discrete-time or event-driven models. From
conversations among the system faculty, the idea of revamping substantially
the foundations of systems and signals emerged to provide a strong basis for
embedded system design.

Traditional courses such as circuit theory (and the resulting emphasis on
linear time-invariant systems) were no longer deemed core courses and a uni-
fied approach to the basics of signals and systems took form as the seed for
launching an initiative to bring our students to appreciate the mathematical
underpinnings of embedded system analysis, including continuous and discrete
abstractions and models. In particular, in 1999, Edward Lee and Pravin Varaija
embarked on a journey that eventually led to EECS20N. They wrote a book
[Lee and Varaiya 2003], developed a course on the fundamentals needed to

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 493

understand signals and systems, and adopted tools such as Matlab [Matlab] to
lower the barrier to abstract reasoning using extensively visualization of sys-
tem behavior. The description of their approach can be found in two papers [Lee
2000; Lee and Varaiya 2000] from which this section is taken.

The Program of the Course. The themes of the course are:

� The connection between imperative (computational) and declarative (math-
ematical) descriptions of signals and systems.

� The use of sets and functions as a universal language for declarative descrip-
tions of signals and systems.

� State machines and frequency domain analysis as complementary tools for
designing and analyzing signals and systems.

� Early and frequent discussion of applications.

State machines were the means to introduce EE students to reason about
digital abstractions and frequency domain analysis was used to introduce CS
students to reason about the continuous time world. The use of applications is
essential to keep the students interested and motivated in absorbing material
that otherwise may be too dry and abstract at an early stage of engineering
education.

The course is designed to last 15 weeks. Below we summarize the contents on
a weekly basis. The first 5 weeks and the last are the most relevant to embedded
systems.

Week 1. The first week introduces forthcoming material by illustrating how
signals can be modeled abstractly as functions on sets. The emphasis is on char-
acterizing the domain and the range, and not on characterizing the function
itself. The startup sequence of a voiceband data modem is used as an illustra-
tion, with a supporting applet that plays the very familiar sound of the startup
handshake of V32.bis modem, examining the waveform in both the time and
frequency domain.

Week 2. The second week introduces systems as functions that map func-
tions (signals) into functions (signals). Again, the focus is not on how the func-
tion is defined, but rather on what is the domain and range. Block diagrams
are defined as a visual syntax for composing functions.

Week 3. The first lecture in the third week is devoted to the problem of
relating declarative and imperative descriptions of signals and systems. This
sets the framework for making the intellectual connection between the labs
and the lecture material. The rest of the week is devoted to introducing the
notion of state and state machines. State machines are described by a function
update that, given the current state and input, returns the new state and out-
put. In anticipation of composing state machines, the concept of stuttering is
introduced.

Week 4. The fourth week deals with nondeterminism and equivalence in
state machines. Equivalence is based on the notion of simulation. Simulation

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

494 • A. L. Sangiovanni-Vincentelli and A. Pinto

relations and bisimulation are defined for both deterministic and nondeter-
ministic machines. These are used to explain that two state machines may be
equivalent even if they have a different number of states, and that one state ma-
chine may be an abstraction of another in that it has all input/output behaviors
of the other (and then some).

Week 5. The fifth week is devoted to composition of state machines. The deep
concepts are synchrony, which gives a rigorous semantics to block diagrams and
feedback. The most useful concept to help subsequent material is that feedback
loops with delays are always well formed.

Week 6–14. In these weeks, the course deals with traditional linear system
topics, such as time-domain response, frequency domain analysis and response,
filtering, convolution, Fourier transforms, sampling and aliasing, and filter
design.

Week 15. This week develops applications that showcase the techniques
presented in the course. The precise topics depend on the interests and ex-
pertise of the instructors, but we have specifically covered vehicle automation,
with emphasis on feedback control systems for automated highways. The use
of discrete magnets in the road and sensors on the vehicles provides a superb
illustration of the risks of aliasing. The few exercises in the text that require
calculus provide any integration formulas that a student might otherwise look
up. Although series figure prominently, we only lightly touch on convergence,
raising, but not resolving, the issue.

The Lab. A major objective of the course is to introduce applications early,
well before the students have built up enough theory to fully analyze the appli-
cations. This helps to motivate the students to learn the theory. In the Lab, we
emphasize the use of software to perform operations that could not possibly be
done by hand, operations on real signals, such as sounds and images.

While the mathematical treatment that dominates in the lecture and text-
book is declarative, the labs focus on an imperative style, where signals and sys-
tems are constructed procedurally. Matlab and Simulink [Matlab] have chosen
this as the basis for these exercises because they are widely used by practition-
ers in the field, and because they are capable of realizing interesting systems.

The labs are divided into two distinct sections: in-lab and independent. The
purpose of the in-lab section is to introduce concepts needed for later parts of
the lab. Each in-lab section is designed to be completed during a scheduled lab
time with an instructor present to clear up any confusing or unclear concepts.
The independent section begins where the in-lab section leaves off. It can be
completed within the scheduled lab period, or may be completed on the students
own time. They write a brief summary of their solution, following a supplied
template, and turn it in at the beginning of the next scheduled lab period.

There are 11 lab exercises, each designed to be completed in 1 week. The
exercises include: Arrays and Sound, Images, State Machines, Control Sys-
tems, Difference and Differential Equations, Spectrum, Comb Filters, Modu-
lation and Demodulation, Sampling and Aliasing. Two of the weeks are quite
interesting (State Machines and Control Systems) from the point of view of

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 495

embedded systems and models of computation. The third lab uses Matlab as
a low-level programming language to construct state machines according to
a systematic design pattern that will allow for easy composition. The theme
of the lab is establishing the correspondence between pictorial representa-
tions of finite automata, mathematical functions giving the state update, and
software realizations. The main project in this lab exercise is to construct
a virtual pet. This problem is inspired by the Tamagotchi virtual pet made
by Bandai in Japan. Tamagotchi pets were popular in the late 1990s and
had behavior considerably more complex than that described in this exercise.
The students design an open-loop controller that keeps the virtual pet alive.
This illustrates that systematically constructed state machines can be easily
composed.

In the Control System lab, students modify the pet so that its behavior is
nondeterministic. They are asked to construct a state machine that can be
composed in a feedback arrangement such that it keeps the cat alive. The
semantics of feedback in this course are consistent with tradition in signals
systems. Computer scientists call this style synchronous composition, and de-
fine the behavior of the feedback system as a (least or greatest) fixed point of a
monotonic function on a partial order. In a course at this level, we cannot go into
this theory in much depth, but we can use this example to explore the subtleties
of synchronous feedback. Most students find this lab quite challenging, but also
very gratifying when they figure it out. The concepts behind it are complex and
better students realize that.

5.2 Discussion and Future Directions

EECS20N has reached a degree of maturity that will allow it to be taught by
any faculty in the department given the large amount of teaching material
available. During the first years, the course was not among the favorites of
the students given its generality and mathematical rigor. However, the fine-
tuning of labs and lectures and of their interrelation has had a positive effect
on the overall understanding of the material and the students now express their
satisfaction with this approach. Having laid out the foundation of the work, we
are now considering extending the present offering in the upper division. The
EE149 class emphasizes three main aspects:
� The idea of introducing signals and systems as described here with the oper-

ational and the denotational view can be traced to the research work that led
to the development of the Lee-Sangiovanni-Vincentelli (LSV) tagged signal
model [Lee and Sangiovanni-Vincentelli 1998], a denotational framework to
compare models of computation. While the concept of time is not as abstract
as in the LSV model, the course does present the denotational view of sys-
tems along similar lines. EE149 will focus on the semantics of embedded
systems and introduce a consistent family of models of computation with the
relative applications, strengths, and weaknesses.

� Using Matlab and Simulink as a virtual prototyping method and being ex-
posed to both the digital and the analog abstraction, the students have an
early exposure to hybrid systems [Lygeros et al.] as an important domain

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

496 • A. L. Sangiovanni-Vincentelli and A. Pinto

for embedded systems where a physical plant described in the continuous-
time domain is controlled by a digital controller. We will devote a substantial
portion of the course to the discussion of the properties of hybrid models as
paradigms for the future of large-scale system monitoring and control.

� A substantial problem is the way in which Simulink combines discrete and
continuous-time models. Simulink essentially embeds the discrete in the con-
tinuous domain, i.e., the numerical integration techniques determine the
time advancement for both continuous and discrete models. Thus de facto
Simulink implements a single model of computation: the synchronous reac-
tive model where logical time is determined by the integration algorithm.
This may make Simulink nonideal for teaching embedded systems where
heterogeneous models of computation play a fundamental role. We will add
Ptolemy II to the Matlab/simulink environment, as a design capture and
verification tool to obviate this problem.

� Implementation platforms are important as they determine the real-time
properties of the system as well as its cost, weight, size, and power consump-
tion. The course will present methods to capture implementation platforms
and to map functionality to platforms.

� Applications will be emphasized as drivers and as test cases for the meth-
ods presented in the class. In particular, during the course, students will be
asked to completely develop an embedded system in a particular application
domain using the methods taught. This design work will be carried out in
teams whose participants will have enough diversity as to cover all aspects
of embedded system design.

Since many of these topics are covered in the graduate class of EECS249, we
will borrow heavily from that experience, while the material of EECS249 will
evolve toward more advanced topics.

6. CONCLUSIONS

We outlined the embedded system education program at the University of
California at Berkeley. We stressed the importance of foundations in educa-
tion as opposed to technicalities. Embedded systems are important enough to
warrant a careful analysis of the mathematical bases upon which we can build
a solid discipline that marries rigor with practical relevance. Given the present
role of embedded systems in our research agenda and the traditional approach
to education in the leading U.S. Universities, the first courses to be developed
are advanced graduate courses. The natural evolution is to solidify the teaching
material to a point where regular graduate classes can be taught and finally
move the contents to the undergraduate curriculum while the graduate courses
adjust continuously to the advances in the field brought about by research. The
flexibility of the U.S. system allows the curriculum to change fairly easily and
to strive for relevance to the ever-changing society and cultural landscape.

While we believe that our program has achieved a set of important goals,
we do realize that much remains to be done. At the undergraduate level, we
are planning to introduce an upper division class on hybrid and embedded

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 497

software systems. At the graduate level, we are considering the addition of reg-
ular courses on theoretical foundations focusing on function description and
manipulation as well as one on reconfigurable and programmable architec-
tural platforms to follow the basic graduate course (EECS249) on embedded
systems. We also believe that embedded system courses should be considered
foundational courses for the entire college of engineering and we are working
with our Dean and Department Chairpersons to address this issue.

The views presented here are for a large part shared with the Artist [Artist]
Network of Excellence Education Team, whose agenda is described in another
paper of this special issue.

ACKNOWLEDGMENTS

We wish to acknowledge the long-time collaboration with Edward Lee, Tom
Henzinger, Richard Newton, Jan Rabaey, Shankar Sastry, and Pravin Varaija
in the research and teaching agenda on embedded systems at Berkeley. The
help and support of the Metropolis group is gratefully acknowledged. Impor-
tant impacts on our approach come from interactions with Albert Benveniste,
Gerard Berry, Paul Caspi, Hugo DeMan, Luciano Lavagno, Joseph Sifakis, and
the ARTIST European Network of Excellence team, Alberto Ferrari and his
colleagues of PARADES, and last, but not least, our industrial associates too
numerous to be mentioned. Funding for this work came from CHESS NSF ITR,
and the GSRC.

REFERENCES

ARTIST. http://www.artist-embedded.org/overview/.
BALARIN, F. ET AL. 1997. Polis: A Design Environment for Control-Dominated Embedded Systems.

Kluwer, Boston, MA.
BALARIN, F. ET AL. 1999. Synthesis of software programs for embedded control application. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems.
BALARIN, F., WATANABE, Y., HSIEH, H., LAVAGNO, L., PASSERONE, C., AND SANGIOVANNI-VINCENTELLI, A.

2003. Metropolis: An integrated electronic system design environment. IEEE Computer.
BALEANI, M., GENNARI, F., JIANG, Y., PATEL, Y., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. 2002.

HW/SW partitioning and code generation of embedded control applications on a reconfigurable ar-
chitecture platform. In Proceedings of the 10th International Symposium on Hardware/Software
Codesign (CODES), Estes Park, Colorado.

BERRY, G. AND GONTHIER, G. 1992. The esterel synchronous programming language: Design, se-
mantics, implementation. Science of Computer Programming 19, 2, 87–152.

BORKAR, S., COHN, R., COX, G., GLEASON, S., AND GROSS, T. 1988. Warp: An integrated solution
of high-speed parallel computing. In Supercomputing ’88: Proceedings of the 1988 ACM/IEEE
Conference on Supercomputing. IEEE Computer Society Press. 330–339.

BRAYTON, R. K., RUDELL, R., SANGIOVANNI-VINCENTELLI, A., AND WANG, A. R. 1987. Mis: A multiple-
level logic optimization system. IEEE Trans. Comput.-Aided Design Integrated Circuits 6, 6
(Nov.), 1062–1081.

BRYANT, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. C-35, 8 (Aug.), 677–691.

CARLONI, L. P. 2004. Latency-Insensitive Design. Ph.D. thesis, University of California at
Berkeley, Electronics Research Laboratory, College of Engineering, Berkeley, CA 94720. Memo-
randum No. UCB/ERL M04/29.

CASPI, P., PILAUD, D., HALBWACHS, N., AND PLAICE, J. A. 1987. Lustre: A declarative language for real-
time programming. In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. ACM Press, New York. 178–188.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

498 • A. L. Sangiovanni-Vincentelli and A. Pinto

CASPI, E., CHU, M., HUANG, R., YEH, J., WAWRZYNEK, J., AND DEHON, A. 2000. Stream computa-
tions organized for reconfigurable execution (score). In FPL ’00: Proceedings of the The Roadmap
to Reconfigurable Computing, 10th International Workshop on Field-Programmable Logic and
Applications. Springer-Verlag. 605–614.

CS294. http://www.cs.berkeley.edu/˜culler/cs294-f03/.
CS294W. http://www.cs.berkeley.edu/˜adj/cs294-1.f00/.
DE KOCK, E. A., ESSINK, G., SMITS, W. J. M., VAN DER WOLF, P., BRUNEL, J.-Y., KRUIJTZER, W. M.,

LIEVERSE, P., AND VISSERS, K. A. 2000. Yapi: Application modeling for signal processing sys-
tems. Proceedings of the Design Automation Conference.

DSPACE. http://www.dspaceinc.com/ww/en/inc/products/sw/targetli.htm.
EE249. http://www-cad.eecs.berkeley.edu/˜polis/class.
EE290A. http://www-cad.eecs.berkeley.edu/respep/research/classes/ee290a/fall02/.
EE290N. http://embedded.eecs.berkeley.edu/concurrency/.
EE290O. http://www.cs.uni-salzburg.at/˜ck/teaching/eecs290o-spring-2002.
EECS20N. http://ptolemy.eecs.berkeley.edu/eecs20/index.html.
FERDINAND, C. AND WILHELM, R. 1998. On predicting data cache behavior for real-time systems. In

Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems. Springer-Verlag, 16–30.

GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. 2003. The nesc language:
A holistic approach to networked embedded systems. SIGPLAN Not. 38, 5, 1–11.

GIOTTO. http://embedded.eecs.berkeley.edu/giotto/.
HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Science of Computer Pro-

gramming 8, 3 (June), 231–274.
HENZINGER, T. A., HOROWITZ, B., AND KIRSCH, C. M. 2003. Giotto: A time-triggered language for

embedded programming. Proceedings of the IEEE 91, 84–99.
HENZINGER, T. A. AND KIRSCH, C. M. 2002. The embedded machine: Predictable, portable real-

time code. In Proceedings of the International Conference on Programming Language Design and
Implementation. ACM Press, New York, 315–326.

HOROWITZ, B. LIEBMAN, J., MA, C., KOO, J., SANGIOVANNI-VINCENTELLI, A., AND SASTRY, S. 2003.
Platform-based embedded software design and system integration for autonomous vehicles. In
Proceedings of the IEEE.

IXP1200. http://www.intel.com/design/network/products/npfamily/ixp1200.htm.
KOPETZ, H. AND GRUNSTEIDL, G. 1994. Ttp-a protocol for fault-tolerant real-time systems. Com-

puter 27, 1, 14–23.
KOUSHANFAR, F., DAVARE, A., NGUYEN, D. T., POTKONJAK, M., AND SANGIOVANNI-VINCENTELLI, A. 2003.

Distributed localized algorithms and protocols for power minimization in networked embedded
systems. In ACM/IEEE International Symposium On Low Power Electronics and Design.

LEE, E. A. 2000. Designing a relevant lab for introductory signals and systems. Proc. of the First
Signal Processing Education Workshop.

LEE, E. A. AND MESSERSCHMITT, D. G. 1987. Synchronous data flow. In Proceedings of the IEEE.
LEE, E. A. AND SANGIOVANNI-VINCENTELLI, A. L. 1998. A framework for comparing models of com-

putation. IEEE Trans. Comput.-Aided Design Integrated Circuits 17, 12 (Dec.), 1217–1229.
LEE, E. A. AND VARAIYA, P. 2000. Introducing signals and systems—the Berkeley approach. Proc.

of the First Signal Processing Education Workshop.
LEE, E. A. AND VARAIYA, P. 2003. Structure and interpretation of signals and systems. Addison-

Wesley, Reading, MA.
LI, Y.-T. S. AND MALIK, S. 1995. Performance analysis of embedded software using implicit path

enumeration. In Workshop on Languages, Compilers and Tools for Real-Time Systems. 88–98.
LIBERTY. http://liberty.cs.princeton.edu/software/lse/.
LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-

time environment. Journal of the ACM 20, 1, 46–61.
LYGEROS, J., TOMLIN, C., AND SASTRY, S. 1999. Controllers for reachability specifications for hybrid

systems. In Automatica, Special Issue on Hybrid Systems.
MARTIN, G. AND SALEFSKI, B. 1998. Methodology and technology for design of communications and

multimedia products via system-level ip integration. In Proceedings of the Conference on Design,
Automation and Test in Europe. IEEE Computer Society.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Embedded System Design Education at Berkeley • 499

MATHWORKS. http://www.mathworks.com/products/rtw/.
MATLAB. http://www.mathworks.com/.
MESCAL. http://embedded.eecs.berkeley.edu/mescal.
MURATA, T. 1989. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE.

541–580. NewsletterInfo: 33. Published as Proceedings of the IEEE, 77, 4.
NEXPERIA. http://www.semiconductors.philips.com/products/nexperia/.
PASSERONE, R. 2004. Semantic foundations for heterogeneous systems. Ph.D. thesis, University

of California, Berkeley.
PATH. http://www.path.berkeley.edu/.
PICORADIO. http://bwrc.eecs.berkeley.edu/research/pico radio.
PINTO, A., CARLONI, L., AND SANGIOVANNI-VINCENTELLI, A. 2002. Constraint-driven communication

synthesis. In Proceedings of the Design Automation Conference 2002 (DAC’02).
PNUELI, A. 1977. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium

on the Foundations of Computer Science (FOCS-77). IEEE, IEEE Computer Society Press, Prov-
idence, Rhode Island, 46–57.

PTOLEMYII. http://ptolemy.eecs.berkeley.edu.
SANGIOVANNI-VINCENTELLI, A. 2002. Defining platform-based design. EEDesign of EETimes.
SANGIOVANNI-VINCENTELLI, A., CARLONI, L., BERNARDINIS, F. D., AND SGROI, M. 2004. Benefits and

challenges for platform-based design. In Proceedings of the 41st Annual Conference on Design
Automation. ACM Press, New York, 409–414.

SHAH, N., PLISHKER, W., AND KEUTZER, K. 2004. NP-Click: A Programming Model for the Intel
IXP1200, 1 ed. Vol. 2. Elsevier, Chapter 9, 181–201.

TEJA. http://www.teja.com/.
VACHHARAJANI, M., VACHHARAJANI, N., PENRY, D. A., BLOME, J., AND AUGUST, D. I. 2004. The liberty

simulation environment, version 1.0. Performance Evaluation Review: Special Issue on Tools for
Architecture Research 31, 4 (Mar.).

XILINX. http://www.xilinx.com.
ZIMET, L., KAO, S., AMIR, A., AND SANGIOVANNI-VINCENTELLI, A. 2004. An embedded system for an eye

detection sensor. In Computer Vision and Image Understanding: Special Issue on Eye detection
and Tracking.

ZIVOJNOVIC, V., PEES, S., AND MEYR, H. 1996. Lisa—machine description language and generic
machine model for hw/sw co-design. IEEE Workshop on VLSI Signal Processing.

Received December 2004; revised March 2005; accepted May 2005

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

View publication statsView publication stats

https://www.researchgate.net/publication/220094156

