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Analysis of Stochastic Automata Networks using Copula Funions

Amit Surana and Alessandro Pinto

Abstract— In this paper we develop a copula based approxi- a function that associates a rate to each transition,Gihd
mation framework for scalable analysis of Stochastic Autorata (1) [J(.#) is a function that associates a guard condition

Networks (SAN) arising in reliability analysis, and can be to each transition, wher8 (.#) is the power set of7. In
described by CTMCs. Copulas provide a general approach to this definition. .5 o ) andT = Ui i Th
model joint distributions in terms of their marginals. Using IS definiion, .~ = Xj=1..N andl = Ui-1. N - 1nhe
copulas functions, the dependencies between the interactj —€duivalence relation= C T x T captures synchronization
automata in the SAN can be captured in terms of local state among transitions. The semantics cfan is rather intuitive
probabilities associated with the automata involved, avaiing and we will only clarify the meaning of synchronization

the need of reachability analysis, which is cursed with sta& 5.4 guard conditions. Two transitions) = (kilvkiz)v)’(j) -

space explosion. We prove results related to invariance obpula iU i i .
with system parameters, and consistency of the approximaih. (ky,kp) € T such thaty“ = V< ) or equivalently

We also outline an empirical procedure for determining coplias ~ 'epresented as

that can best represent the underlying dependence in a given I D Ui

SAN. We illustrate this approach through various examples b V< (ky, ko) = V< (k1. ko)

increasing complexity. . . i .
must always occur together which also implies that the# rat

|. INTRODUCTION must be the same. Finally, a transitipe ') has rate 1) (y)

— _ ) if the current state of the system belong&lé (y), otherwise
Performance and reliability analysis has long relied of,q tansition is disabled e (y) =0.

Markov Chain models[3]. Given a Continuous Time Markov
Chain (CTMC), analysis entails solving the set of differaint
equationsit= Qm, whereQ is the infinitesimal generator of
the CTMC. It is never the case that complex systems are
directly modeled using a CTMC. Typically, the system is
described using higher level languages, such as Genetalize
Stochastic Petri Nets (GSPN) [9], that support some sort
of compact representation by means of synchronization and
composition. The system is then given as a set of sub-
systems interacting through some communication prirrgtive
The analysis of these systems starts by first computing the
set of reachable system states and corresponding transsitio
and then generating a single Markov Chain (see e.g. [4]). = =1{((0,2),(0,2))}
Because in the worst case the number of reachable states is

the product of the number of states of each sub-system, the

reachability analysis step suffers from the well knownestat Figure 1 shows a simple example of a producé?), and
explosion problem. After reachability analysis, approaien  , .,nsymers(2). Both the producer and the consumer have
techniques are available to solve large Markov models (Sgg.,| 1asks (state 1). When the producer wants to transmit
e.g. [2]). Ideally, the generation of the reachable statesp something to the consumer, the consumer must receive it.
should be avoided. However, reachability analysis is d&den Thus, transition(0,2) of the producer automaton must be

to compute performance and reliability metrics. To clarifyS nchronized with the transitiof0,2) of the consumer
this point, we start by defining the modeling language th utomaton ’

we use, and by providing an example system. The equation that describe the transient evolution of the

In this article we focus on a restricted form of StOChaSti‘brobability that the producer is in state 0 is following:
Automata Networks (SAN)[14] that we will calsan— ] '

little SAN. A san is pair [ = {&V}i_1.n, < ). D _ o — 2ani@ f on? 107 ()
AW (7W 10 5,20 GV) is a stochastic automaton where o o "o o né
70 is a set of statesI) C .70 x .0 is a set of where iz? is the probability that the producer and the
transitions,so € .70 is the initial stateA) : () - R-gis consumer are both in state 0. Unfortunately, such joint arob
_ bilities are in general not easy to compute (non-produchfor
This work was supported by UTRC. _ _solution) and one has to typically resort to the computadion
Amit Surana and Alessandro Pinto are with the United . -
Technologies ~ Research ~ Center:Sur anaA@it rc. utc. com  Set of reachable states by solving the reachability problem

Pi nt oA@itrc. utc. com incurring in the state space explosion. Some approximate
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Fig. 1. A simple example of a producer and a consumer.



methods exists to avoid reachability analysis such as tlile wo Let I's be a set of all synchronized transitions (including
in[5], [20], that leverage the properties of the descriptio the guard conditions) in the system, i.e
language. Decomposition is also the basic idea presented S O
in this article. Our work is more general as we model the Fs={(",k™) :me N, (i".k")satisfy (5}. (6)

joint probability using particular parametric functionsdwn  \ve shall denote bl"f.( the joint probability that the synchro-
as copulas, and learn the value of the parameters through . transitions are executed together, and by
simulations. Thus, this method is easy to automate and can

be applied to a wide variety of stochastic models (including Me= {rqiill)’ . ,ré'h’l“s)} ={r: (k) ers} @)

GSPN). This method reduces the size of the system of differ- o T _ _

ential equations to be at moS;_; || which is much the set of joint probability associated with all synchrauz

smaller than the worst case product space resulting froffnsitions in the system, whelg = |Ts|. Then system (4)

the reachability analysis. The price that we pay is that théan be rewritten as

performance metrics computed by this method are local (i.e. ) = RO ) 4 RO ) ®)

relative to each automaton). However, this is not a linotati S ’

since the same method (i.e. use of parametric functions) c@mere, " € [0,1] is the vector of elements iy’ C s,

also be employed to compute the joint probability of anyyhich is the set of synchronized transitions affecting the

other set of states. _ _i—th system withNL = [N}, and R is the transpose of
The rest of the paper is structured as follows. In Sectioghe infinite generator corresponding to these synchronized

Il 'we describe copula based approximation framework, angansitions. Again, note that the functi@f!) automatically

discuss results related to invariance of copula with systefgkes care of guard conditions (unidirectional synchraniz

parameters, time invariance of copulas and consistendyeof ttions) by setting of the appropriate rate entriesRﬁH to be
approximation. In Section Ill, we describe the copula fgtin ¢’

procedure in context of our application for modeliagn. We seek an approximation of (8), which does not require

In Section IV, we iIIust.rate the copula bgsed apprOXimatiOEomputations directly involvings. Such an approximation
framework through various examples of increasing compleXey 1, be obtained by replacimg by a function of the form
ity. Finally, in section V we summarize the main results of

this paper, and present some future research directions. "iiif) (t) fun(F(t))
Il. APPROXIMATE COMPOSITIONAL MODELING Tg(t) = : ~ : 9)
The joint system probability vectare R™ for san where s (t) fanen (7))

N, is the number of reachable states, satisfies: Ns

) where, fiia (71),i = 1--- | Ns are functions (which in principle
m=Rn () can explicitly depend on time and all the system rate param-
N 5 () ;
where,R= QT and Q is the infinitesimal generator of the €t€rs/\ = nglf\(li(g('))) to IE))eTchos%n from an appropriate
CTMC associated with the reachability graphssin. Let ~Class, andir= (W), . 7N)T € RP is solution of the
) e [0,1] denote the probability vector over statgg’) ~ approximate system
for the i—th subsystem, whers = |.#(1)|. There exists a A1) _ oW, p@il) s
linear transformatiotM() (independent of time and system A RO+ RTE()
rate parameters) such that

) — M) 3) )~ RO 1+ RV10) (7) (10)

leading to :
A0~ MORm= RO 4+ L0y @) AN = RO+ RN ()

where,L0) = (MOR—ROM®) andR is the transpose of With,

the infinitesimal generator corresponding to the transitio _ L i (i) i

r® not involvedin any synchronization or guard condition. = {(fie- ij‘s)T i =1 Ns rq<j|' ens}. @y
Note that guard condition can be treated as a unidirectiongl,, any approximation (10) to be consistent, we require that
synchronization. The second term in equation (4) aris§fe 7 evolves as a probability vector, i.e. for afy0) €

due to synchronizations/guard conditions, and hence a8 1)°, fi(t) € [0,1]°, Vt, whereD = ziN_1 N;.

be expressed entirely in terms of joint probabilities asso- |+ 1, n
ciated with such transitions. Thre- synchronization will be

?ﬂe_r‘“‘fied bY the gakir: Sf \liectors of indiﬁegﬁ“,r”), where random variables as follows: for any giver R, let i')(t)
"= {i, - in} andk" = {ka, - kn}, such tha be a random variable which takes value O if subsystem

Vim € "3, €11y #im, sty (G ) = YK, ) s in statek with a probabilityP(§ (t) = 1) = 1 (t). For

(5) brevity we will often suppress the dependenc@@f(t) and

s out that there is a natural function class for the
above approximation. To motivate this we introduce binary



rqii)(t) on time. The cumulative mass function (CMF) ﬁy
is given by
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the elliptical classGaussiancopula, the traditional method

to model dependence, is most sensitive to the center of the
distribution and implies tail independence. On the otheicha
the Student’s tcopula assigns more probability to tail events
than the Gaussian copula. The other extreme isgptbduct
copula

(12) Cp(ug, -+ ,Up) = Uy X -+~ X Up, (18)
In this framework anyn—synchronized transition with =
{i1, -+ ,in},k = {ki,--- . kn} can be represented by the ran-Which models complete independence of the underlying

dom vector(§ ", -
nization being

(1) =P(S, (1) =1,

S(t) = 1),

(13)

3(:)) with the probability of synchro- random variables. The product copula falls in a more general

class ofArchimedearcopulas, which have the form

Therefore, in this setting the approximation function (9yvhere,¢:[0,1] — [0,e) is a bijection with

is determined, once the joint CMFk(t')(sl,--- ,Sn) of the

random vectm(SSll) (t), ,Sg")(t)) can be approximated in

terms of it's marginald:k(['n’}‘),m =1,---,n. Given the joint

CMF (or cumulative distribution function(CDF) ), while
finding the marginal CMF (or CFD) is straightforward
the reverse problem is nontrivial. Remarkably, this proble
admits a solution in terms of special class of functionsechll

copulas We briefly review copulas in the next section.

A. Review of Copulas
Copula Definition:A D—dimensional copul& is a func-

copula)p(t) = (—logt)?,a €

Co(Uz,---,Up) = @ {@(u1) +---@(up)},  (19)
o(1) =0, (-1) qu (t)>0, VieN. (20)
@ is called a generator, e.g. of which inclugét) = —logt

t—a-1

(Product copula, see (18)p(t) = *5—,a € (0,») (Clayton

[1,00) (Gumbel copula), and

o) = %,a € R\ {0} (Frank copula). The generator de-

pends only on a single parameter, and hence an Archimedean

copula is completely specified ongeand a are given. In

bivariate case, there are 22 such families known [19].
Properties of CopulasCopulas satisfy Frechet Hoeffding

tion on aD dimensional unit cube? = [0,1°, C: # — [0,1], nequality

that satisfies D

ma U+1-D,0) <C(ug,up,---,up) < Cpy, 21

C(ug,up,---,up) = 0O if atleast one u; = 0(14) X(i; I ) (U, L ) " @1
C(L1,-- w1 = U (15)  where,

andC is D—increasing, i.e for every; = (ay, - ,ap) € # Cm = min(ug, Uy, -+, Up), (22)

andup = (by,--- ,bp) € £ such thatg < by,

2 2 . .
' Z (_1)Il+m+lnc(uli17 e ,UniD) 2 0

ip=1

is known as themaximumcopula and represents perfect
positive dependence between the random variables. Copulas

(16) are globally Lipsitz, i.e¥uz,u; € [0,1]"

i1=1
where,uj; = aj andujz =bj for all j € {1,---,D} [11],[19]. C(u1) —C(uz)| < [lug — uz|fs.

Next we state the Sklar's theorem (see [17] for detailS)y,qiher nice property of copulas is that for strictly mono
which laid the foundation for statistical analysis usin@<€o ..~ «tormations of the random variables, copulas are reithe

ulaskl , h _ id h q bl invariant, or change in certain simple ways [12].
Sklar's Theorem : Consider the random variables Copula Density:Assuming copula density

X1,-+-,Xp with joint CDF F and continuous marginals,
F,i=1,---,D. ThenF has a unique copula representation, a°C
ie. OXy---0Xp’

(23)

c= (24)

F(x1, - ,%p) = C(F1(X1),--- ,Fo(Xp))-

If /,i=1,---,D are not all continuous (discrete, or mixed
continuous-discrete), Sklar’'s theorem still holds, bt top-
ulaC is not guaranteed to be unique. In discrete case, unique
copula representation foF exists only on RafF)--- x
---Ran(Fp), where Rag) denotes the range. From Sklar’s
Theorem we see that for a multivariate distribution funetio
the univariate margins and the multivariate dependenae-str
ture can be separated, and the dependence structure can b&F;(s;),F(sy)) = C(Fi(s1), F2(s2)) — C(Fa(s1 — 1), Fx(s2))
represented by a copula. ~C(R(s1), Fo(s2— 1) +C(Fa(s1— 1), Fa(sz — 1){26)
Examples of CopulasTwo popular class of copulas are
the Gaussian Copulas and Student t-Couplas which fall ifhis formula generalizes to arbitrary higher dimensior$].[1

(17) exists, the joint density function can be expressed as

D
f(Xl, oo 7XD) = C(Fl(X]_), e 7FD(XD)) I_! fJ (XJ) (25)

J:
where, f; are univariate density functions. In discrete this

takes a different form, for e.g. copula density for two déter
random variable§;, S with CMF F is given by



B. Using Copulas irsan analysis is that the structure of reachability graph (which is an

Based on Sklar's theorem stated in previous section, f@terative representation of dependencies in the systeesg d
any n— synchronized transition with = {iy,--,in},k = NOt change with time or rate parameters. Consequently, the
{k,--- ,ka} and for any given timet, the joint CMF relation (3) which gives the marginal probabilities in term

S0 .--.s,) of the random vecto i) (¢ - ) 1)) is of the joint is independent of time and the rate parameters.
a (51 &) i ﬁil ®) S(‘“ ®) As a result, we expect the converse to be true, i.e. the oalati

linked to its margmalsiléq'ft“),m: 1,---,n, through a copula (¢opulas) which give joint in terms of marginals, should be
G as time invariant and independent of parameter values. This is
0 _ (i1) (in) formalized in the next theorem.

Fa' (80,77 50) = CaFg (1), Pt (S0)): @ Theorem 2.1 (Independence from rates and timi)e
where, in principleCa can depend on time and the sys-copulasC, appearing in (27) cannot explicitly depend on
tem rate parameterd. Once again note that the copulatime, and is independent of the system rate paraméters
Cin above is not guaranteed to be unique as the underly-The proof can be found in [13]. This is a very powerful
ing random variables are discrete (in fact binary), thougkesult, since once the appropriate copula functions have
all such copulas agree on F{&;ﬁl'tl))--- X ---Rar(Fléq't”)) = been determined from system simulation traces for some
{0,1— nfé(t),l}--- x {0,1— nf;:(t),l}. In particular, for the choice of the rate parameter values, they can be used for

analyzing the system behavior for any other set of rate
parameters and for any time instant. It is most convenient to
determine the best copulas fit by analyzing the steady state
behavior of the system for nominal rate parameters. This can
ré”(t) — CtA(Fk(litl)(l),... ka(ni?)(l))a (28) be accomplished by simulating the entire system using the
standard Monte Carlo techniques (see section Il for d@tail
where,ci, is the copula density corresponding to the copula \otivated by this, we will take the approximation func-
G- For e.g., using relation (26) the joint probability thattions in (9) to be,
subsystermiy is in statek;, and subsysteny is in statek;

approximation (9) we only requirqu”(t), the probability
of subsystems = (i1,---,in) being jointly in the statk =
(Kg,---,kn). This can be recovered though the relation

1

can be expressed as Cl(féib "(iNl))
(iziz) (in) (i2) R £y
Ny, = C(Fkl (1)a_k2 (1) _ . _ : — : , (31)
= 1--Ah)-a-a)y+ca-n"1-nl) g (71) ch(ﬁ“NT?,---,ﬁ(iNm}))
or “ s
i = o 0.1 ) ) e e
. . . . i1 In)y 11 In
B e (RRLC AN L

1) Example |: Approximate RepresentatioRor the sys- Emal point to note is that, whlle_ the existence of a co_pula
hich represents the joint CMF is guaranteed, there is no

tem described in section | (see Figure 1), the approxima\% : d S - i
representation using copula functions takes the form, constructive way to determine It exac_:t y. I practise one
can only determine a copula (from a finite class of chosen

Y = RO RYAY copulas) which carbest capture the dependency structure
72 — RO Ré” T%(Z) (29) (see section 111-B for details). The next theorem guaratee
that despite any numerical error in estimating the copulas
where, underlying the synchronized transitions, the approximate
Ao A A A3 system (10) is always well behaved.
RL — o -A1 O Rél) _ 0 Theorem 2.2 (ConsistencyThe solutions of the approxi-
0 0 —A ’ As ’ mate system (10) with the approximation vector (31) is well
behaved, i.e. for anyi(0) € [0,1]°,
o e o[ ¢ N
RY=1 A -2 0 ), R"=| A3 |, Zﬁj(')(t)zu VteR, Vi=1,--,N. (33)
0 0 —As 0 =1
For proof see [13].
with &Y = %)2), ? = nééz) and
I1l. SOLUTION OF THEUNDERLYING CTMC USING THE
med =V il ren@a-m1-7?) -1 (30) APPROXIMATION FRAMEWORK
is the approximation vector with = {A1,A2,---,Ag}. A. Simulator

We next show that the copul&, appearing in (27) In order to capture dependencies in the system with
cannot explicitly depend on time, and is also independerbpulas, the first step is to observe the dependencies throug
of the system rate parameters. The intuition behind thismulations. By simulating the complesan (typically for



nominal rate parameters), one can generate a time trace) Copula Parameter Estimationfor any parametric
which describes how the states, the different subsysteens @opula family in the test spac€, the value of the parameter

in, evolve over time. The system is to be simulated for lon¢vector) needs to be estimated. Recall, that copulas ievolv
enough time so that a steady state is reached. From thwgo underlying functions: the marginal CDF and the joint
trace, one can extract a subsequence corresponding to e&@fbF. To estimate copula parameters, the first issue consists

synchronized transition. We shall denote by in specifying how to estimate separately the marginals and
i the joint law. Moreover, some of these functions can be fully
5 . CSen = cogim) : . 2
= Skl Sk ne = Skl et Sy (’34) known. Depending on the assumptions made, some quantities

have to be estimated parametrically, or semi parametyicall

the steady state trace of length—n; +1 corresponding 10 o eyen non-parametrically. In non-parametric case one can

the evolution of state 111)’“, aﬁ(;:)) involved in am— syn-  yse a completely empirical approach or invoke smoothing
chronized transition with = {i1, -+ ,im},k = {ky,~--,km}.  methods well-known in statistics: such as kernels,wasglet
Given the sampled data from simulations, copula fittingrthogonal polynomials, nearest neighbors, etc [15]. In ou
procedure is described in the next section. work, we focus on parametric estimation using the standard

Maximum Likelihood Estimation (MLE) approach.

B. Copula Fitting
For parametric estimation we assume that copula to be

In this section we summarize the procedure for determ'%sﬂmated belongs to a familiCy, 0 € O}, where® is space
ing copula functions which can most effectively capture th

arameters. Consider a copula-based parametric model of
dependence structure in the observed data. There are lsev?éé)dom vectoX = (Xu, - -+ , Xp) with cumulative distribution
steps involved in this process. L 7D

1) Test Space SelectiorEirst an appropriate test Spacefunctmn.
needs to be constructed. A copula test spéacé a finite F(x;a1,---,ap,0) = C(Fi(x1,01), - ,Fo(Xp,ap); ),
subset of the set consisting of members of all possible (38)

copula families from which the best will be chosen forwhere, F are the univariate CDFs with parameters
a particular fitting application. In order to construct amay,---, ap, respectively. For a sample of simevith observed
appropriate test space, the following aspects should mntakvectorsx; = (Xi1,--- ,Xp),i = 1,--- ,n one can form two types
into account[10]Size(i.e. number of distinct copula families of log-likelihood functions:

in test space)Diversity (i.e. distinct properties exhibited by h

copulas in the test space) aRelevancdi.e. only compara- Li(aj) = leog fi(Xij; aj), i=1,---,D, (39)
ble copulas enter the test space). Relevance of copula can be i=

determined based on how effective it is in describing a giveand

dependence structure in terms of its parameter range. Depen

dency measures such as Kendall's Tau and Spearman’s Rhéa1,--,0p,0) = Zlogf(xhal,“' ; 0, 6)

[11] can be used. Considé€K,Y) be distributed according i

to H, andC be the associated copula. Kendall's Tau which

measurers the probabilities of concordance and discoedanc — 21|09< (F1(xi;a1), - Fo(Xp;ap); ﬂf Xij: ] )
for two independent pair$Xi,Y:) and (Xz,Y2) each with

distributionH, is given by ) (40)
101 where, we have used (25). Based on these likelihood func-
T= 4/ / C(u,v)dC(u,v) (35) tions, there are three approaches to estimate the parameter

[16]:
1 Full Maximum Likelihood (FML) method in which the
estimatedy,---,0p, 0 are obtained by simultaneously

Given bivariate observationgf,xy;),i = 1,--- ,n distributed
according toH, an empirical estimate af can be obtained

using solving (39) and (40).
Lo 1 Sign{(xq — X1j) (Xai — X2;)]- 36) 2 Inference function of Margins (IFM) method, in which
( n )i the parameter estimates are obtained sequentially: first
2 parametergiq,--- ,dp are obtained by solving (39), and

In some instances such as for Archimedean copula (see then used in (40) to determirg _
section 1I-A), estimate of Kendall's, can also be used to 3 Canonical Maximum Likelihood (CML) method which

obtain an estimate of the parameteiby solving is like IFM, but differs in that no assumptions are made
1 about the parametric form of the marginal distributions
1+4/ mdr: 7. (37) F, i.e. | are taken to be empirical CDFs. Hence, only

@(t) 6 remains to be estimated.

For e.g, usmg this relation, for Clayton copufla= -2 I L, for In san setting with underlying discrete random variables,
Gumbel8 = 1 -, and for Morgenstern copulg = 21 Next CML method is a natural approach for copula parameter
section describes a general approach for copula paramegstimation. In the first step the margmal distribution is
estimation. estimated, which just involves estlmatmd in (12) for



the underlying binary random variable. For this step, MLBbe the steady state trace of the p(ﬁll,Sé) involved in of

is trivial, and is equivalent to estimating: empirically.  synchronized transition. Leﬁ{((i,j),i =0,1,j =0,1 be the
Given this marginal distribution, in the second step copulampirical estimates of the joint probability mass based on
dependency parameter is estimated by constructing the lagis trace. Similarly, for a given copula with the estimated
likelihood function as described above. For simplicityt le parameter (based on this trace), one can obtain an estifate o
the synchronized transition involve the state p@¢,S2), the joint probability by using (26), which we shall denote by
then the joint probability in terms of the margina]I is givencik(i, j),i=0,1,j=0,1. Then, one can determine goodness
in terms of copula density as (see Eq. 26) of copula fit using either & norm

c(F1(0),F2(0);8) = C(1-m!1-72;0 I T e
FaOR0:0) = ci-Rg1=ngo) o) =5 SR -d0D @)
c(FKl(l),sz (0;8) = 1-— @2—0(1—r¢1,1—r¢2;9) 0=
C(Fklll(o)v |:k'22(1); ) = 1-— Tlﬁ —C(1- ”féa 1— ”fé 0) or the Kulber-Leiberdivergence
i1 i2/1Y- i1 i2 1 q 2.y o 1 1 N
c(R¢(1),R2(1);6) = nl+m2+C(l-nt1-n26)-1 DR, = Z);)hlk(ivj)log hik(f,q) (44)
Using above relations, the copula parameiecan be ob- I=0]= G 1)
tained using ML estimation C. Algorithm
oLn In this section we summarize the overall steps:
00 0, (41) () Use Monte Carlo Simulations to generate a time traces
where of steady state evolution of the system (for nominal rate
' parameters) under consideration. Extract from this the
n i1, i, time trace subsequences which correspond to each of
n _ I1/d1 12/d2 .
L7(6) = i;logc(Fkl (841))-Fig (861):0) (42) the synchronized transition as described in section IIl-
o A.
and (q'(lli,s:(zzi),i =1---,nis the binary sequence of system(ll) For a given synchronized transition, choose an appro-
being jointly in state(S%,S2), obtained from Monte Carlo priate test class for fitting copula as discussed in section
simulations as described previously. This approach génera  l-B.1.

izes to synchronization involving three or more states in(dl) Use CML approach to estimate copula parameters as
straightforward manner by using an appropriate genewilize ~ described in 11l-B.2.
formula for copula density, as alluded in the end of sectidh) Determine the best copula from the test space using the
[I-A. procedure given in section I11-B.3

For discrete random variables, the ML approach for estlY) Repeat steps II-IV for each synchronized transition.
mating parameters often suffers from convergence problems
An alternative is to appropriately transform the discrete

random variables into continuous and then apply the mL !N this section we apply our methodology to tvean
estimation for the resulting continuous random variable [6 of increasing complexity. For each case we restrict the test

3) Goodness of Fit:Finally, a goodness-of-fit test is space to be composed entirely of Archimedean copulas:

required for choosing the best copula in the chosen Claggeulﬂcally Produlct tFLanl_(’ Clai/;on and ?u;n?hel These th
% . Depending on the discrete or the continuous setting us€gPuias were selected since, they most of them span he

for estimating copula parameters, and the type of copuﬁ*;{mreI range of EKeng;\I’s Tau. In g_ddititon, the rrllaxin:jumf
employed for fitting, there exists several tests for detenmgj copulaCr (see Eq. 22) corresponding to upper bound o

the goodness of fit [11], [19]. An important class is thafreChet Hoeffding inequality (21) was also added to make

of blanket testswhich requires minimal tuning of the test Fhe test space comprehensive. We follow the algorithm given

parameters. It includes tests such as those based on ahpir|(n, se_ctlon “I'_C for copula f'tt'ng' Finally, we compare the
copula, Kendalls transform and Rosenblatts transform [ Olution obiained from approximate system (10) with the

For Archimedean copulas, there is an alternative simpl ;xact solution obtained using the reachability analysis.

approach for determining the goodness of fit, see [8], [1]A. Example |
In discrete setting any of these approaches can be used a

well. Alternatively, one can employ & norm or Kulber- the time traces from simulation, we learn the dependency

Leiberdivergence to compare the empirical jointdistributior]oetween the subsystems using copulas. First we estimate
estimated from the simulation trace, and that obtainedcbasﬁenda”,S tau to ber — 0.0065, suggesting a weak depen-
on the fitted copul_a. Eorsimplicity, we describe this apptoa dence. The corresponding pa’rameter estimates were found
in detail for the bivariate case. Let to be: Claytonf = 0.0311, Frankf = 0.1073 and Gumbel
i _ i) i2) i _ (dlin) (i2) 6 = 1.0132, with Frank copula giving the best fit. We found
Si(’nl (Sfll’;wsff’;‘l)’ Somr1 = (S 1 Sem 1) that the continuous extension method (see [12]) also gives
Sy = (Seng > Sang ) similar results. Figure 2 shows the solution of system (29)

IV. NUMERICAL RESULTS

Plere we revisit the system described in (1I-B.1). Given
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Fig. 2. Comparison of solution obtained using approximmatitased on g:?) z E‘l"‘:)m)
independent (green doted) and Frank copulas (black), widh obtained ’ ’
using reachability analysis (red curve). The ratesXare- 2000,A; = 1524, (iz;:) z (;:’;:)
M2 = 600, A3 = 1234, A4 = 1025, A5 = 2553, andig = 1729. ¢4.24) @530
26(serve?) 25(user2)
using Frank copula, compared with the true solution (red
curve) obtained by constructing the full reachability drap Fig. 3. Figure for larger system
Note that the product copula also performs well in capturing o
dependence (see the green curve in Fig. 2), consistent with TABLE |
the weak dependence pointed out earlier. BEST FIT COPULAS FOREXAMPLE II.
B. Example Il Sync | Copula 0 Sync Copula 0
. . . . 12 3,7

In this section we consider a relatively large example| %5 Frank | 3.9602 5 Clayton | 14.9366
involving 11 automata. Figure 3 shows, the different sub- Vi Cin - ok Clayton | 0.4821
systems, synchronized transitions and the guard condition| 75 | Frank | 0.3059 o Clayton | 50.3630
There are total 14 synchronized transitions (only a subset 55, | Cm - . Frank | 0.9269
shown in figure), 2 guard conditions and 18 distinct rate pay %3, | Gumbel | 1.3605 35 Clayton | 47.0802
rameters. Out of 14 synchronized transitions, 2 involveehr 5 Cnn . &I Frank | 68.9264
s_tates, while the remaining ones involve 2 sta_tes ((si)ee fadso t 55 | Frank | 06456 || 731 (Guard) | Frank | -1.1682
first column of 1). The locaR(") and synchronize®s’ rate S0 G - 919(Guard) | Frank | -0.9269

matrices, and the corresponding synchronization ved'&r
for each subsystem can be easily constructed; due to lack

of space we do not present them here. The guard conditiopgschability analysis (red solid curves) and that obtained
are treated as unidirectional synchronized transitionsy@ pased on assuming that all underlying copulas are of the
noted in section Il. Again we used the test space comprisingoduct formCp (dashed green curves). Subplots a) and d)
of following copulas:Product,Frank,Clayton, Gumbeind  correspond to nominal rate parameters, while the subplots
Cm. For each synchronized transition and the guard conditiogy ang d) are for different set of rate values many of which
the best copula from the test space and the correspondigigter from nominal values by a factor of more than 10.
copula parameter is listed in Table I. We have followed &or this system, the reachability graph comprises of 150
global ordering of the states as depicted in figure 3. NoWgates compared to the 30 states required in the copula based

the following points: approximation framework.lt is clear from the figure 4 tha th

1 The product copula is never selected. copula based framework can accurately capture the system

2 For each of the synchronized transition involving thregesponse for wide range of parameter values, while avoiding
statesCr, is always found to be the best one. state space explosion of underlying state space.

3 For the two guard condition, the best copula is found to
be Frank with negative parameter value. This suggests V. CONCLUDING REMARKS
that the guard condition induces a negative Kendall's |n this work we have developed a copula based approxima-
Tau, i.e. a discordance in the dependence. tion framework for scalable analysis of stochastic autamat

Finally, figure 4 shows the response of the system (dashedtworkssan which can be described by CTMCs. Using
black curves), comparing it with that obtained based on theopulas functions, the dependencies between the integacti



VI. ACKNOWLEDGEMENTS

1 1
o o The funding provided by United Technologies Research
i . Center for this work is greatly appreciated. Authors would
0 2 4 6 8 10 . .
. ot " ¥ ike to thank Andrew Lim from the IEOR department at the
o <o University of California at Berkeley for suggesting the use
o | 0 of copula functions. They also would like to thank Andrzej
4 1 0 2 4 6 8 10 . . .
1 1 Banaszuk at UTRC for fruitful discussions and feedback on
05 05 this work.
KT Yooy ® o Smie © REFERENCES
@) (b) [1] P. Barbe, C. Genest, K. Ghoudi, and B. Remillard. On kéisda
process.Journal of Multivariate Analysis58(2):197-229, 1996.
1 1 [2] A Bobbio and K S Trivedi. An aggregation technique for tr@nsient
| analysis of stiff markov chaindEEE Trans. Comput.35(9):803-814,
0.5 Y 0.5F 1986.
0 - [3] Gunter Bolch, Stefan Greiner, Hermann de Meer, and KisBiorid-

harbhai Trivedi. Queueing Networks and Markov Chaind/Viley-
Interscience, 2005.

Al [4] Gianfranco Ciardo, Joshua Gluckman, and David Nicolstiihuted
o s m = 2 o s I 5 2 state-space generation of discrete-state stochasticlsndti#=ORMS
1 1 Journal of Computing10:82—-93, 1996.
o os os [5] Gianfranco Ciardo and Kishor S. Trivedi. A decompositiapproach
’ for stochastic reward net modelBerf. Eval 18:37-59, 1993.
of = = = o o S = = 2 [6] M. Denuita and P. Lamberta. Constraints on concordaneasures
{(miiisec) {(miilisec) in bivariate discrete datalournal of Multivariate Analysis93:40-57,
© (d) 2005.

. ) ) ) o [7] C. Genest, B. Remillard, and D. Beaudoin. Goodnesstdgfits for
Fig. 4. Comparison of solution (red is ground truth) with ialtiependent copulas: A review and a power studynsurance: Mathematics and
copulas (green) and with obtained using copula selectionguiure (black) Economics 44(2):199-213, 2009.
for subsystemss? (subplots &) & c)) and7* (subplots b) & d)) inthe large  [8] C. Genest and L. Rivest. Statistical inference procesidor bivariate
example. Subplots a) and b) correspond to nominal rateeeas, while archimedean copulasournal of the American Statistical Association
subplots c) and d) are similar plots but for a different sepafameters, 88:1034-1043, 1993.
many of which differ from nominal values by a factor of moreuthl10. [9] G. Conte S. Donatelli M. Ajimone Marsan, G. Balbo and G.rfées-

chinis. Modelling with Generalized Stochastic Petri Nef®hn Wiley
and Sons, 1995.
[10] F. Michiels and A. Schepper. A copula test space modei; to avoid
the worng copula choiceKybernetika 44(6):864-878, 2008.
stochastic automata subsystemssian can be captured 1] E-ev%-YNO%I(S.GSF-)/;?]égtrr%ieurglgonlgggomIasLecture Notes in Statistics.
in terms Cff local State.p.mbabi”ties associated with Sl_JFHZ] J. Neslehova. Dependence of Non-Continuous Random Varaibles
automata involved, avoiding the need for the reachablw Ph.D. Thesis. ETH Zurich, Switzerland, 2004. _
analysis which is cursed with state space explosion. 3] A. Pinto. Stochastic analyis of networked embeddedesys. United
. L ) . Technologies Research Center, Internal Rep2@10.
showed that copula based approximation is consistent,randii4) B. plateau and K. Atif. Stochastic automata network ajdeling
principle can capture the true system behavior to any disire  parallel systems. 17(10):1093-1108, October 1991. _
level of accuracy. We also proved that the dependency strug®! J: Rank (Editor).The estimation of copulas: Theory and practice, In.
. L . . . Copulas: From Theory to Application in Financdisk Books, New
ture captured in form of copulas is time invariant and also is  york, 2007.
invariant under the change of system rate parameters. Th{i$] C. Romano. Calibrating and Simulating Copula Functions: An
once the appropriate copula functions have been learnt from APPlication fo the ltalian Stock MarketUniversit a degli Studi di
. . . Roma, La Sapienza, 2002. Centro Interdipartimentale stitt®ie
Monte Carlo simulation of the complete system for nominal  |economia dei Mercati, Working Paper, n. 12.
rate parameters, the same copulas can be used for analyZit¥§) A. Sklar. Fonctions de repartition a n dimensions e demarges.
the system with any other set of rate parameters. We de- g,‘g;’_"’gg’fslggg' Institut de Statistique de I'Univivetside Paris
S(_:”bed. in de.ta” varlous-approaches to learn copulas fromig] m. Telek. Some Advanced Reliability Modelling Techniquéh.D.
given simulation trace. Finally, we successfully demaatsil Thesis. Technical University of Budapest, Budapest, Honged94.
; ; 9] P. Trivedi and D. M. Zimmer. Copula modeling: An intraztion for
the. overall COpUIa based ap_prOX|mat|on_framework throuQ[ﬁ practitioners. Foundations and Trends in Econometricy(1):1111,
various examples of increasing complexity. 2005,

. . . [20] C. Murray Woodside and Yao Li. Complete decompositioh o
There are several pOSSIble extensions. In many appllc@- stochastic petri nets representing generalized servitgorks. IEEE

tions, compositional analysis of petri nets with general SO  Trans. Comput.44(4):577-592, 1995.
journ distributions is required. In this case Markov Regare

tive Processes form the underlying stochastic proces&s [1

and the process evolution is governed by integro-difféaént

equations. Extending copula framework in this setting will

be of great practical interest. Finally, exploring copuéeséd

framework for rapid exploration in synthesis problem is

another direction to pursue in the future.


https://www.researchgate.net/publication/224216615

