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Analysis of Stochastic Automata Networks using Copula Functions

Amit Surana and Alessandro Pinto

Abstract— In this paper we develop a copula based approxi-
mation framework for scalable analysis of Stochastic Automata
Networks (SAN) arising in reliability analysis, and can be
described by CTMCs. Copulas provide a general approach to
model joint distributions in terms of their marginals. Using
copulas functions, the dependencies between the interacting
automata in the SAN can be captured in terms of local state
probabilities associated with the automata involved, avoiding
the need of reachability analysis, which is cursed with state
space explosion. We prove results related to invariance of copula
with system parameters, and consistency of the approximation.
We also outline an empirical procedure for determining copulas
that can best represent the underlying dependence in a given
SAN. We illustrate this approach through various examples of
increasing complexity.

I. I NTRODUCTION

Performance and reliability analysis has long relied on
Markov Chain models[3]. Given a Continuous Time Markov
Chain (CTMC), analysis entails solving the set of differential
equationsπ̇ = Qπ , whereQ is the infinitesimal generator of
the CTMC. It is never the case that complex systems are
directly modeled using a CTMC. Typically, the system is
described using higher level languages, such as Generalized
Stochastic Petri Nets (GSPN) [9], that support some sort
of compact representation by means of synchronization and
composition. The system is then given as a set of sub-
systems interacting through some communication primitives.
The analysis of these systems starts by first computing the
set of reachable system states and corresponding transitions,
and then generating a single Markov Chain (see e.g. [4]).
Because in the worst case the number of reachable states is
the product of the number of states of each sub-system, the
reachability analysis step suffers from the well known state
explosion problem. After reachability analysis, approximate
techniques are available to solve large Markov models (see
e.g. [2]). Ideally, the generation of the reachable state space
should be avoided. However, reachability analysis is essential
to compute performance and reliability metrics. To clarify
this point, we start by defining the modeling language that
we use, and by providing an example system.

In this article we focus on a restricted form of Stochastic
Automata Networks (SAN)[14] that we will callsan–
little SAN. A san is pair ∫ = ({A (i)}i=1...N, ⇐⇒ ).
A (i)(S (i),Γ(i),s0,λ (i),G(i)) is a stochastic automaton where
S (i) is a set of states,Γ(i) ⊆ S (i) × S (i) is a set of
transitions,s0 ∈ S (i) is the initial state,λ (i) : Γ(i) → R≥0 is
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a function that associates a rate to each transition, andG(i) :
Γ(i) →℘(S ) is a function that associates a guard condition
to each transition, where℘(S ) is the power set ofS . In
this definition,S = ×i=1...NS

(i) and Γ = ∪i=1...NΓ(i). The
equivalence relation⇐⇒⊆ Γ×Γ captures synchronization
among transitions. The semantics of asan is rather intuitive
and we will only clarify the meaning of synchronization
and guard conditions. Two transitionsγ(i) = (ki

1,k
i
2),γ

( j) =
(ki

1,k
i
2) ∈ Γ × Γ such thatγ(i) ⇐⇒ γ( j) or equivalently

represented as

γ(i)(ki
1,k

i
2) ⇐⇒ γ( j)(ki

1,k
i
2)

must always occur together which also implies that their rate
must be the same. Finally, a transitionγ ∈Γ(i) has rateλ (i)(γ)
if the current state of the system belongs toG(i)(γ), otherwise
the transition is disabled i.e.λ (i)(γ) = 0.

Fig. 1. A simple example of a producer and a consumer.

Figure 1 shows a simple example of a producerA (1), and
a consumerA (2). Both the producer and the consumer have
local tasks (state 1). When the producer wants to transmit
something to the consumer, the consumer must receive it.
Thus, transition(0,2) of the producer automaton must be
synchronized with the transition(0,2) of the consumer
automaton.

The equation that describe the transient evolution of the
probability that the producer is in state 0 is following:

˙π (1)
0 = −λ0π (1)

0 −λ3π (12)
00 + λ2π (2)

0 + λ1π (1)
0 (1)

where π (12)
00 is the probability that the producer and the

consumer are both in state 0. Unfortunately, such joint proba-
bilities are in general not easy to compute (non-product form
solution) and one has to typically resort to the computationof
set of reachable states by solving the reachability problem
incurring in the state space explosion. Some approximate



methods exists to avoid reachability analysis such as the work
in[5], [20], that leverage the properties of the description
language. Decomposition is also the basic idea presented
in this article. Our work is more general as we model the
joint probability using particular parametric functions known
as copulas, and learn the value of the parameters through
simulations. Thus, this method is easy to automate and can
be applied to a wide variety of stochastic models (including
GSPN). This method reduces the size of the system of differ-
ential equations to be at most∑i=1...N |S (i)| which is much
smaller than the worst case product space resulting from
the reachability analysis. The price that we pay is that the
performance metrics computed by this method are local (i.e.
relative to each automaton). However, this is not a limitation
since the same method (i.e. use of parametric functions) can
also be employed to compute the joint probability of any
other set of states.

The rest of the paper is structured as follows. In Section
II we describe copula based approximation framework, and
discuss results related to invariance of copula with system
parameters, time invariance of copulas and consistency of the
approximation. In Section III, we describe the copula fitting
procedure in context of our application for modelingsan.
In Section IV, we illustrate the copula based approximation
framework through various examples of increasing complex-
ity. Finally, in section V we summarize the main results of
this paper, and present some future research directions.

II. A PPROXIMATE COMPOSITIONAL MODELING

The joint system probability vectorπ ∈R
No for san where

No is the number of reachable states, satisfies:

π̇ = Rπ (2)

where,R= QT and Q is the infinitesimal generator of the
CTMC associated with the reachability graph ofsan. Let
π (i) ∈ [0,1]Ni denote the probability vector over statesS (i)

for the i−th subsystem, whereNi = |S (i)|. There exists a
linear transformationM(i) (independent of time and system
rate parameters) such that

π (i) = M(i)π , (3)

leading to

π̇ (i) = M(i)Rπ = R(i)π (i) +L(i)π (4)

where,L(i) = (M(i)R−R(i)M(i)) andR(i) is the transpose of
the infinitesimal generator corresponding to the transition
Γ(i) not involvedin any synchronization or guard condition.
Note that guard condition can be treated as a unidirectional
synchronization. The second term in equation (4) arises
due to synchronizations/guard conditions, and hence can
be expressed entirely in terms of joint probabilities asso-
ciated with such transitions. Then− synchronization will be
identified by the pair of vectors of indices(in,kn), where
in = {i1, · · · , in} andkn = {k1, · · · ,kn}, such that

∀im ∈ in,∃i l ∈ in, i l 6= im, s.t. γ(im)(k(im)
m , ·) ⇐⇒ γ(i l )(k(i l )

l , ·)
(5)

Let ΓS be a set of all synchronized transitions (including
the guard conditions) in the system, i.e

ΓS = {(im,km) : m∈ N,(im,km)satisfy (5)}. (6)

We shall denote byπ i
k the joint probability that the synchro-

nized transitions are executed together, and by

Πs = {π (i1)
k1

, · · · ,π (iNs)
kNs

} = {π i
k : (i,k) ∈ ΓS}, (7)

the set of joint probability associated with all synchronized
transitions in the system, whereNs = |TS|. Then system (4)
can be rewritten as

π̇ (i) = R(i)π (i) +R(i)
s π (i)

s , (8)

where,π (i)
s ∈ [0,1]N

i
s is the vector of elements inΠ(i)

s ⊆ Πs,
which is the set of synchronized transitions affecting the
i−th system withNi

s = |Π(i)
s |, and R(i)

s is the transpose of
the infinite generator corresponding to these synchronized
transitions. Again, note that the functionG(i) automatically
takes care of guard conditions (unidirectional synchroniza-
tions) by setting of the appropriate rate entries inR(i)

s to be
zero.

We seek an approximation of (8), which does not require
computations directly involvingπs. Such an approximation
can be obtained by replacingπs by a function of the form

πs(t) =









π (i1)
k1

(t)
...

π (iNs)
kNs

(t)









≈







f1tΛ(π̂(t))
...

fNstΛ(π̂(t))






(9)

where, fitΛ(π̂), i = 1· · · ,Ns are functions (which in principle
can explicitly depend on time and all the system rate param-
etersΛ =

⋃N
i=1 λ (i)(Γ(i))) to be chosen from an appropriate

class, andπ̂ = (π̂ (1), · · · , π̂ (N))T ∈ R
D is solution of the

approximate system

˙̂π (1) = R(1)π̂ +R(1)
s f(1)(π̂)

...
˙̂π (i) = R(i)π̂ +R(i)

s f(i)(π̂) (10)
...

˙̂π (N) = R(i)π̂ +R(N)
s f(N)(π̂)

with,

f(i) = {( f j1, · · · , f j
Ni

s
)T : ∀ j l = 1, · · · ,Ni

s,π
(i jl

)

k jl
∈ Π(i)

s }. (11)

For any approximation (10) to be consistent, we require that
the π̂ evolves as a probability vector, i.e. for anŷπ(0) ∈
[0,1]D, π̂(t) ∈ [0,1]D,∀t, whereD = ∑N

i=1Ni .
It turns out that there is a natural function class for the

above approximation. To motivate this we introduce binary
random variables as follows: for any givent ∈ R, let S(i)

k (t)
be a random variable which takes value 0 if subsystemi
is in statek with a probabilityP(S(i)

k (t) = 1) = π (i)
k (t). For

brevity we will often suppress the dependence ofS(i)
k (t) and



π (i)
k (t) on time. The cumulative mass function (CMF) forS(i)

k
is given by

F (i)
kt (s) = P(S(i)

k (t) ≤ s) =











1 s≥ 1

1−π (i)
k (t) 0≤ s< 1

0 s< 0

.

(12)
In this framework anyn−synchronized transition withi =
{i1, · · · , in},k = {k1, · · · ,kn} can be represented by the ran-
dom vector(S(i1)

k1
, · · · ,S(in)

kn
) with the probability of synchro-

nization being

πs(t) = P(S(i1)
k1

(t) = 1, · · · ,S(in)
kn

(t) = 1). (13)

Therefore, in this setting the approximation function (9)
is determined, once the joint CMFF (i)

kt (s1, · · · ,sn) of the

random vector(S(i1)
k1

(t), · · · ,S(in)
kn

(t)) can be approximated in

terms of it’s marginalsF(im)
kmt ,m = 1, · · · ,n. Given the joint

CMF (or cumulative distribution function(CDF) ), while
finding the marginal CMF (or CFD) is straightforward,
the reverse problem is nontrivial. Remarkably, this problem
admits a solution in terms of special class of functions called
copulas. We briefly review copulas in the next section.

A. Review of Copulas

Copula Definition:A D−dimensional copulaC is a func-
tion on aD dimensional unit cubeB = [0,1]D, C : B → [0,1],
that satisfies

C(u1,u2, · · · ,uD) = 0 if atleast one ui = 0(14)

C(1,1, · · · ,ui , · · · ,1) = ui . (15)

andC is D−increasing, i.e for everyu1 = (a1, · · · ,aD) ∈ B

andu2 = (b1, · · · ,bD) ∈ B such thatai < bi ,

2

∑
i1=1

· · ·
2

∑
iD=1

(−1)i1+···+inC(u1i1, · · · ,uniD) ≥ 0 (16)

where,u j1 = a j andu j2 = b j for all j ∈ {1, · · · ,D} [11],[19].
Next we state the Sklar’s theorem (see [17] for details),
which laid the foundation for statistical analysis using cop-
ulas.

Sklar’s Theorem : Consider the random variables
X1, · · · ,XD with joint CDF F and continuous marginals,
Fi , i = 1, · · · ,D. ThenF has a unique copula representation,
i.e.

F(x1, · · · ,xD) = C(F1(x1), · · · ,FD(xD)). (17)

If Fi , i = 1, · · · ,D are not all continuous (discrete, or mixed
continuous-discrete), Sklar’s theorem still holds, but the cop-
ulaC is not guaranteed to be unique. In discrete case, unique
copula representation forF exists only on Ran(F1) · · · ×
· · ·Ran(FD), where Ran(·) denotes the range. From Sklar’s
Theorem we see that for a multivariate distribution function,
the univariate margins and the multivariate dependence struc-
ture can be separated, and the dependence structure can be
represented by a copula.

Examples of Copulas:Two popular class of copulas are
the Gaussian Copulas and Student t-Couplas which fall in

the elliptical class.Gaussiancopula, the traditional method
to model dependence, is most sensitive to the center of the
distribution and implies tail independence. On the other hand,
theStudent’s tcopula assigns more probability to tail events
than the Gaussian copula. The other extreme is theproduct
copula

CP(u1, · · · ,uD) = u1×·· ·×uD, (18)

which models complete independence of the underlying
random variables. The product copula falls in a more general
class ofArchimedeancopulas, which have the form

Cφ (u1, · · · ,uD) = φ−1{φ(u1)+ · · ·φ(uD)}, (19)

where,φ : [0,1] → [0,∞) is a bijection with

φ(1) = 0, (−1)i di

dti
φ−1(t) > 0, ∀i ∈ N. (20)

φ is called a generator, e.g. of which includeφ(t) = − logt
(Product copula, see (18)),φ(t) = t−α−1

α ,α ∈ (0,∞) (Clayton
copula),φ(t) = (− logt)α ,α ∈ [1,∞) (Gumbel copula), and
φ(t) = eαt−1

eα−1 ,α ∈ R\{0} (Frank copula). The generator de-
pends only on a single parameter, and hence an Archimedean
copula is completely specified onceφ and α are given. In
bivariate case, there are 22 such families known [19].

Properties of Copulas:Copulas satisfy Frechet Hoeffding
inequality

max(
D

∑
i=1

ui +1−D,0)≤C(u1,u2, · · · ,uD) ≤Cm, (21)

where,
Cm = min(u1,u2, · · · ,uD), (22)

is known as themaximumcopula and represents perfect
positive dependence between the random variables. Copulas
are globally Lipsitz, i.e.∀u1,u2 ∈ [0,1]n

|C(u1)−C(u2)| ≤ ||u1−u2||1. (23)

Another nice property of copulas is that for strictly monotone
transformations of the random variables, copulas are either
invariant, or change in certain simple ways [12].

Copula Density:Assuming copula density

c =
∂ DC

∂x1 · · ·∂xD
, (24)

exists, the joint density function can be expressed as

f (x1, . . . ,xD) = c(F1(x1), · · · ,FD(xD))
D

∏
j=1

f j(x j) (25)

where, fi are univariate density functions. In discrete this
takes a different form, for e.g. copula density for two discrete
random variablesS1,S2 with CMF Fi is given by

c(F1(s1),F2(s2)) = C(F1(s1),F2(s2))−C(F1(s1−1),F2(s2))

−C(F1(s1),F2(s2−1))+C(F1(s1−1),F2(s2−1)).(26)

This formula generalizes to arbitrary higher dimensions [19].



B. Using Copulas insan analysis

Based on Sklar’s theorem stated in previous section, for
any n− synchronized transition withi = {i1, · · · , in},k =
{k1, · · · ,kn} and for any given timet, the joint CMF
F (i)

kt (s1, · · · ,sn) of the random vector(S(i1)
k1

(t), · · · ,S(in)
kn

(t)) is

linked to its marginalsF (im)
kmt ,m= 1, · · · ,n, through a copula

Ct as

F(i)
kt (s1, · · · ,sn) = CtΛ(F (i1)

k1t (s1), · · · ,F
(in)
knt (sn)), (27)

where, in principleCtΛ can depend on time and the sys-
tem rate parametersΛ. Once again note that the copula
CtΛ above is not guaranteed to be unique as the underly-
ing random variables are discrete (in fact binary), though
all such copulas agree on Ran(F (i1)

k1t ) · · · × · · ·Ran(F (in)
knt ) ≡

{0,1−π i1
k1

(t),1}· · ·×{0,1−π in
kn

(t),1}. In particular, for the

approximation (9) we only requireπ (i)
k (t), the probability

of subsystemsi = (i1, · · · , in) being jointly in the statek =
(k1, · · · ,kn). This can be recovered though the relation

π (i)
k (t) = ctΛ(F (i1)

k1t (1), · · · ,F (in)
knt (1)), (28)

where,ctΛ is the copula density corresponding to the copula
CtΛ. For e.g., using relation (26) the joint probability that
subsystemi1 is in statek1, and subsystemi2 is in statek2

can be expressed as

π (i1i2)
k1k2

= c(F (i1)
k1

(1),F(i2)
k2

(1))

= 1− (1−π (i)
k )− (1−π ( j)

m )+C(1−π (i)
k ,1−π ( j)

m )

or

π (i1i2)
k1k2

(t) = ct(π
(i1)
k1

(t),π (i2)
k2

(t))

= π (i1)
k1

(t)+ π (i2)
k2

(t)+CtΛ(1−π (i1)
k1

(t),1−π (i2)
k2

(t))−1.

1) Example I: Approximate Representation:For the sys-
tem described in section I (see Figure 1), the approximate
representation using copula functions takes the form,

π̇ (1) = R(1)π (1) +R(1)
s π (1)

s

π̇ (2) = R(2)π (2) +R(1)
s π (2)

s (29)

where,

R(1) =





−λ0 λ1 λ2

λ0 −λ1 0
0 0 −λ2



 , R(1)
s =





−λ3

0
λ3



 ,

R(2) =





−λ4 λ5 λ6

λ4 −λ5 0
0 0 −λ6



 , R(2)
s =





−λ3

λ3

0



 ,

with π (1)
s = π (12)

00 , π (2)
s = π (12)

00 and

π (12)
00 = π (1)

0 + π (2)
0 +CtΛ(1−π (1)

0 ,1−π (2)
0 )−1 (30)

is the approximation vector withΛ = {λ1,λ2, · · · ,λ6}.
We next show that the copulaCtΛ appearing in (27)

cannot explicitly depend on time, and is also independent
of the system rate parameters. The intuition behind this

is that the structure of reachability graph (which is an
alterative representation of dependencies in the system) does
not change with time or rate parameters. Consequently, the
relation (3) which gives the marginal probabilities in terms
of the joint is independent of time and the rate parameters.
As a result, we expect the converse to be true, i.e. the relation
(copulas) which give joint in terms of marginals, should be
time invariant and independent of parameter values. This is
formalized in the next theorem.

Theorem 2.1 (Independence from rates and time):The
copulasCtΛ appearing in (27) cannot explicitly depend on
time, and is independent of the system rate parametersΛ.

The proof can be found in [13]. This is a very powerful
result, since once the appropriate copula functions have
been determined from system simulation traces for some
choice of the rate parameter values, they can be used for
analyzing the system behavior for any other set of rate
parameters and for any time instant. It is most convenient to
determine the best copulas fit by analyzing the steady state
behavior of the system for nominal rate parameters. This can
be accomplished by simulating the entire system using the
standard Monte Carlo techniques (see section III for details).

Motivated by this, we will take the approximation func-
tions in (9) to be,




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
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, (31)

where,

c(π (i1)
k1

, · · · ,π (in)
kn

) ≡ c(F(i1)
k1

(1), · · · ,F (in)
kn

(1)). (32)

Final point to note is that, while the existence of a copula
which represents the joint CMF is guaranteed, there is no
constructive way to determine it exactly. In practise one
can only determine a copula (from a finite class of chosen
copulas) which canbest capture the dependency structure
(see section III-B for details). The next theorem guarantees
that despite any numerical error in estimating the copulas
underlying the synchronized transitions, the approximate
system (10) is always well behaved.

Theorem 2.2 (Consistency):The solutions of the approxi-
mate system (10) with the approximation vector (31) is well
behaved, i.e. for anŷπ(0) ∈ [0,1]D,

Ni

∑
j=1

π̂ (i)
j (t) = l , ∀t ∈ R, ∀i = 1, · · · ,N. (33)

For proof see [13].

III. SOLUTION OF THE UNDERLYING CTMC USING THE

APPROXIMATION FRAMEWORK

A. Simulator

In order to capture dependencies in the system with
copulas, the first step is to observe the dependencies through
simulations. By simulating the completesan (typically for



nominal rate parameters), one can generate a time trace
which describes how the states, the different subsystems are
in, evolve over time. The system is to be simulated for long
enough time so that a steady state is reached. From this
trace, one can extract a subsequence corresponding to each
synchronized transition. We shall denote by

si
k,n1

= (s(i1)
k1,n1

, · · · ,s(im)
km,n1

), · · · ,si
k,nf

= (s(i1)
k1,nf

, · · · ,s(im)
km,nf

),

(34)
the steady state trace of lengthnf −n1+1 corresponding to
the evolution of states(S(i1)

k1
, · · · ,S(im)

km
) involved in am− syn-

chronized transition withi = {i1, · · · , im},k = {k1, · · · ,km}.
Given the sampled data from simulations, copula fitting
procedure is described in the next section.

B. Copula Fitting

In this section we summarize the procedure for determin-
ing copula functions which can most effectively capture the
dependence structure in the observed data. There are several
steps involved in this process.

1) Test Space Selection:First an appropriate test space
needs to be constructed. A copula test spaceC is a finite
subset of the set consisting of members of all possible
copula families from which the best will be chosen for
a particular fitting application. In order to construct an
appropriate test space, the following aspects should be taken
into account[10]:Size(i.e. number of distinct copula families
in test space),Diversity (i.e. distinct properties exhibited by
copulas in the test space) andRelevance(i.e. only compara-
ble copulas enter the test space). Relevance of copula can be
determined based on how effective it is in describing a given
dependence structure in terms of its parameter range. Depen-
dency measures such as Kendall’s Tau and Spearman’s Rho
[11] can be used. Consider(X,Y) be distributed according
to H, andC be the associated copula. Kendall’s Tau which
measurers the probabilities of concordance and discordance
for two independent pairs(X1,Y1) and (X2,Y2) each with
distributionH, is given by

τ = 4
∫ 1

0

∫ 1

0
C(u,v)dC(u,v)−1. (35)

Given bivariate observations (x1i,x2i), i = 1, · · · ,n distributed
according toH, an empirical estimate ofτ can be obtained
using

τ̂ =
1

(
n
2

)
∑
i< j

Sign[(x1i −x1 j)(x2i −x2 j)]. (36)

In some instances such as for Archimedean copula (see
section II-A), estimate of Kendall’sτ, can also be used to
obtain an estimate of the parameterα by solving

1+4
∫ 1

0

φ(t)
φ ′(t)

dr = τ̂. (37)

For e.g, using this relation, for Clayton copulaθ = 2τ
1−τ , for

Gumbelθ = 1
1−τ , and for Morgenstern copulaθ = 9

2τ. Next
section describes a general approach for copula parameter
estimation.

2) Copula Parameter Estimation:For any parametric
copula family in the test spaceC , the value of the parameter
(vector) needs to be estimated. Recall, that copulas involve
two underlying functions: the marginal CDF and the joint
CDF. To estimate copula parameters, the first issue consists
in specifying how to estimate separately the marginals and
the joint law. Moreover, some of these functions can be fully
known. Depending on the assumptions made, some quantities
have to be estimated parametrically, or semi parametrically
or even non-parametrically. In non-parametric case one can
use a completely empirical approach or invoke smoothing
methods well-known in statistics: such as kernels,wavelets,
orthogonal polynomials, nearest neighbors, etc [15]. In our
work, we focus on parametric estimation using the standard
Maximum Likelihood Estimation (MLE) approach.

For parametric estimation we assume that copula to be
estimated belongs to a family{Cθ ,θ ∈ Θ}, whereΘ is space
of parameters. Consider a copula-based parametric model of
random vectorX = (X1, · · · ,XD) with cumulative distribution
function:

F(x;α1, · · · ,αD,θ ) = C(F1(x1,α1), · · · ,FD(xD,αD);θ ),
(38)

where, Fi are the univariate CDFs with parameters
α1, · · · ,αD, respectively. For a sample of sizen with observed
vectorsxi = (xi1, · · · ,xiD), i = 1, · · · ,n one can form two types
of log-likelihood functions:

L j(α j ) =
n

∑
i=1

log f j(xi j ;α j ), j = 1, · · · ,D, (39)

and

L(α1, · · · ,αD,θ ) =
n

∑
i=1

log f (xi ,α1, · · · ;αn,θ )

=
n

∑
i=1

log

(

c(F1(xi1;α1), ·,FD(xiD ;αD);θ )
D

∏
j=1

f j (xi j ;α j)

)

, (40)

where, we have used (25). Based on these likelihood func-
tions, there are three approaches to estimate the parameters
[16]:

1 Full Maximum Likelihood (FML) method in which the
estimateα̂1, · · · , α̂D, θ̂ are obtained by simultaneously
solving (39) and (40).

2 Inference function of Margins (IFM) method, in which
the parameter estimates are obtained sequentially: first
parameterŝα1, · · · , α̂D are obtained by solving (39), and
then used in (40) to determineθ .

3 Canonical Maximum Likelihood (CML) method which
is like IFM, but differs in that no assumptions are made
about the parametric form of the marginal distributions
Fi, i.e. Fi are taken to be empirical CDFs. Hence, only
θ remains to be estimated.

In san setting with underlying discrete random variables,
CML method is a natural approach for copula parameter
estimation. In the first step the marginal distribution is
estimated, which just involves estimatingπ (k)

i in (12) for



the underlying binary random variable. For this step, MLE
is trivial, and is equivalent to estimatingπ empirically.
Given this marginal distribution, in the second step copula
dependency parameter is estimated by constructing the log-
likelihood function as described above. For simplicity, let
the synchronized transition involve the state pair(Si1

k1
,Si2

k2
),

then the joint probability in terms of the marginal is given
in terms of copula density as (see Eq. 26)

c(F i1
k1

(0),F i2
k2

(0);θ ) = C(1−π i1
k1

,1−π i2
k2

;θ )

c(F i1
k1

(1),F i2
k2

(0);θ ) = 1−π i2
k2
−C(1−π i1

k1
,1−π i2

k2
;θ )

c(F i1
k1

(0),F i2
k2

(1);θ ) = 1−π i1
k1
−C(1−π i1

k1
,1−π i2

k2
;θ )

c(F i1
k1

(1),F i2
k2

(1);θ ) = π i1
k1

+ π i2
k2

+C(1−π i1
k1

,1−π i2
k2

;θ )−1.

Using above relations, the copula parameterθ can be ob-
tained using ML estimation

∂Ln

∂θ
= 0, (41)

where,

Ln(θ ) =
n

∑
i=1

logc(F i1
k1

(si1
k1i)),F

i2
k2

(si2
k2i);θ ) (42)

and (si1
k1i ,s

i2
k2i), i = 1· · · ,n is the binary sequence of system

being jointly in state(Si1
k1

,Si2
k2

), obtained from Monte Carlo
simulations as described previously. This approach general-
izes to synchronization involving three or more states in a
straightforward manner by using an appropriate generalized
formula for copula density, as alluded in the end of section
II-A.

For discrete random variables, the ML approach for esti-
mating parameters often suffers from convergence problems.
An alternative is to appropriately transform the discrete
random variables into continuous and then apply the ML
estimation for the resulting continuous random variable [6].

3) Goodness of Fit: Finally, a goodness-of-fit test is
required for choosing the best copula in the chosen class
C . Depending on the discrete or the continuous setting used
for estimating copula parameters, and the type of copula
employed for fitting, there exists several tests for determining
the goodness of fit [11], [19]. An important class is that
of blanket testswhich requires minimal tuning of the test
parameters. It includes tests such as those based on empirical
copula, Kendalls transform and Rosenblatts transform [7].
For Archimedean copulas, there is an alternative simpler
approach for determining the goodness of fit, see [8], [1].
In discrete setting any of these approaches can be used as
well. Alternatively, one can employ al1 norm or Kulber-
Leiberdivergence to compare the empirical joint distribution
estimated from the simulation trace, and that obtained based
on the fitted copula. For simplicity, we describe this approach
in detail for the bivariate case. Let

si
k,n1

= (s(i1)
k1,n1

,s(i2)
k2,n1

), si
k,n1+1 = (s(i1)

k1,n1+1,s
(i2)
k2,n1+1) · · ·

si
k,nf

= (s(i1)
k1,nf

,s(i2)
k2,nf

),

be the steady state trace of the pair(Si1
k1

,Si2
k2

) involved in of
synchronized transition. Let̂hi

k(i, j), i = 0,1, j = 0,1 be the
empirical estimates of the joint probability mass based on
this trace. Similarly, for a given copula with the estimated
parameter (based on this trace), one can obtain an estimate of
the joint probability by using (26), which we shall denote by
ci

k(i, j), i = 0,1, j = 0,1. Then, one can determine goodness
of copula fit using either al1 norm

l1(ĥ
i
k ,c

i
k) =

1

∑
i=0

1

∑
j=0

|ĥi
k(i, j)−ci

k(i, j)| (43)

or theKulber-Leiberdivergence

D(ĥi
k ,c

i
k) =

1

∑
i=0

1

∑
j=0

ĥi
k(i, j) log

ĥi
k(i, j)

ci
k(i, j)

. (44)

C. Algorithm

In this section we summarize the overall steps:

(I) Use Monte Carlo Simulations to generate a time traces
of steady state evolution of the system (for nominal rate
parameters) under consideration. Extract from this the
time trace subsequences which correspond to each of
the synchronized transition as described in section III-
A.

(II) For a given synchronized transition, choose an appro-
priate test class for fitting copula as discussed in section
III-B.1.

(III) Use CML approach to estimate copula parameters as
described in III-B.2.

(IV) Determine the best copula from the test space using the
procedure given in section III-B.3

(V) Repeat steps II-IV for each synchronized transition.

IV. N UMERICAL RESULTS

In this section we apply our methodology to twosan
of increasing complexity. For each case we restrict the test
space to be composed entirely of Archimedean copulas:
specifically Product, Frank, Clayton and Gumbel. These
copulas were selected since, they most of them span the
entire range of Kendal’s Tau. In addition, the maximum
copulaCm (see Eq. 22) corresponding to upper bound of
Frechet Hoeffding inequality (21) was also added to make
the test space comprehensive. We follow the algorithm given
in section III-C for copula fitting. Finally, we compare the
solution obtained from approximate system (10) with the
exact solution obtained using the reachability analysis.

A. Example I

Here we revisit the system described in (II-B.1). Given
the time traces from simulation, we learn the dependency
between the subsystems using copulas. First we estimate
Kendall’s tau to beτ = 0.0065, suggesting a weak depen-
dence. The corresponding parameter estimates were found
to be: Claytonθ = 0.0311, Frankθ = 0.1073 and Gumbel
θ = 1.0132, with Frank copula giving the best fit. We found
that the continuous extension method (see [12]) also gives
similar results. Figure 2 shows the solution of system (29)
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Fig. 2. Comparison of solution obtained using approximation based on
independent (green doted) and Frank copulas (black), with that obtained
using reachability analysis (red curve). The rates areλ0 = 2000,λ1 = 1524,
λ2 = 600, λ3 = 1234,λ4 = 1025,λ5 = 2553, andλ6 = 1729.

using Frank copula, compared with the true solution (red
curve) obtained by constructing the full reachability graph.
Note that the product copula also performs well in capturing
dependence (see the green curve in Fig. 2), consistent with
the weak dependence pointed out earlier.

B. Example II

In this section we consider a relatively large example
involving 11 automata. Figure 3 shows, the different sub-
systems, synchronized transitions and the guard conditions.
There are total 14 synchronized transitions (only a subset
shown in figure), 2 guard conditions and 18 distinct rate pa-
rameters. Out of 14 synchronized transitions, 2 involve three
states, while the remaining ones involve 2 states (see also the
first column of I). The localR(i) and synchronizedR(i)

s rate
matrices, and the corresponding synchronization vectorπ (i)

s

for each subsystem can be easily constructed; due to lack
of space we do not present them here. The guard conditions
are treated as unidirectional synchronized transitions, as was
noted in section II. Again we used the test space comprising
of following copulas:Product,Frank,Clayton, Gumbeland
Cm. For each synchronized transition and the guard condition,
the best copula from the test space and the corresponding
copula parameter is listed in Table I. We have followed a
global ordering of the states as depicted in figure 3. Note
the following points:

1 The product copula is never selected.
2 For each of the synchronized transition involving three

states,Cm is always found to be the best one.
3 For the two guard condition, the best copula is found to

be Frank with negative parameter value. This suggests
that the guard condition induces a negative Kendall’s
Tau, i.e. a discordance in the dependence.

Finally, figure 4 shows the response of the system (dashed
black curves), comparing it with that obtained based on the

Fig. 3. Figure for larger system

TABLE I

BEST FIT COPULAS FOREXAMPLE II.

Sync Copula θ
π(1,2)

2,5 Frank 3.9602

π(1,2)
3,4 Cm -

π(2,3)
5,8 Frank 0.3059

π(2,3,7)
6,9,19 Cm -

π(4,5)
11,14 Gumbel 1.3605

π(4,5)
12,13 Cm -

π(6,5)
17,14 Frank 0.6456

π(6,5,10)
18,15,27 Cm -

Sync Copula θ
π(3,7)

7,22 Clayton 14.9366

π(7,9)
20,23 Clayton 0.4821

π(9,11)
24,29 Clayton 50.3630

π(9,10)
25,28 Frank 0.9269

π(9,8)
26,21 Clayton 47.0802

π(6,11)
16,30 Frank 68.9264

π(9,7)
23,19 (Guard) Frank -1.1682

π(9,10)
25,27 (Guard) Frank -0.9269

reachability analysis (red solid curves) and that obtained
based on assuming that all underlying copulas are of the
product formCP (dashed green curves). Subplots a) and d)
correspond to nominal rate parameters, while the subplots
c) and d) are for different set of rate values many of which
differ from nominal values by a factor of more than 10.
For this system, the reachability graph comprises of 150
states compared to the 30 states required in the copula based
approximation framework.It is clear from the figure 4 that the
copula based framework can accurately capture the system
response for wide range of parameter values, while avoiding
state space explosion of underlying state space.

V. CONCLUDING REMARKS

In this work we have developed a copula based approxima-
tion framework for scalable analysis of stochastic automata
networkssan which can be described by CTMCs. Using
copulas functions, the dependencies between the interacting
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Fig. 4. Comparison of solution (red is ground truth) with allindependent
copulas (green) and with obtained using copula selection procedure (black)
for subsystemsA 2 (subplots a) & c)) andA 4 (subplots b) & d)) in the large
example. Subplots a) and b) correspond to nominal rate, parameters, while
subplots c) and d) are similar plots but for a different set ofparameters,
many of which differ from nominal values by a factor of more than 10.

stochastic automata subsystems insan can be captured
in terms of local state probabilities associated with such
automata involved, avoiding the need for the reachability
analysis which is cursed with state space explosion. We
showed that copula based approximation is consistent, and in
principle can capture the true system behavior to any desired
level of accuracy. We also proved that the dependency struc-
ture captured in form of copulas is time invariant and also is
invariant under the change of system rate parameters. Thus,
once the appropriate copula functions have been learnt from
Monte Carlo simulation of the complete system for nominal
rate parameters, the same copulas can be used for analyzing
the system with any other set of rate parameters. We de-
scribed in detail various approaches to learn copulas from a
given simulation trace. Finally, we successfully demonstrated
the overall copula based approximation framework through
various examples of increasing complexity.

There are several possible extensions. In many applica-
tions, compositional analysis of petri nets with general so-
journ distributions is required. In this case Markov Regerera-
tive Processes form the underlying stochastic processes [18],
and the process evolution is governed by integro-differential
equations. Extending copula framework in this setting will
be of great practical interest. Finally, exploring copula based
framework for rapid exploration in synthesis problem is
another direction to pursue in the future.
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