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Abstract

We propose a system-level design flow for building au-
tomation and control (BAC) systems. The input to the design
flow is a high level description of the control algorithms
given in a model-based environment such as Simulink. The
input specification is translated into an intermediate for-
mat, and then automatically refined into a distributed im-
plementation. Refinement includes optimal mapping of the
functional specification on a set of computation and com-
munication resources, and software synthesis, which gener-
ates code for each component in the mapped design while
guaranteeing semantic equivalence with the original speci-
fication. Experiments with a temperature control system are
presented to illustrate the flow.

1 Introduction

The building stock in the US accounts for 40% of to-
tal energy consumption and 70% of electricity consumption
[18]. Limits on carbon emissions are driving new regula-
tions that will require buildings to be energy efficient ac-
cording to standards that are likely to be more stringent than
the ASHRAE 90.1 [2]. The design of low energy buildings
– zero energy in the ideal case – is challenging but not im-
possible. There are today examples of zero energy buildings
[24], but they are the results of ad-hoc designs that are not
easy to generalize.

The design methodology used today for large buildings
is top-down. Different sub-systems (e.g., mechanical and
electrical) are designed in isolation by domain experts fol-
lowing design documents flown down after the bid process.
This methodology is not suitable for low energy buildings
that require interaction among architects, mechanical engi-
neers and control engineers. Consider for instance adopt-
ing low energy solutions such as natural ventilation and ac-

tive facade. In this case, architectural design (e.g. build-
ing orientation), the design of the mechanical equipments
of the HVAC system and the design of the control algo-
rithms cannot be done in isolation. In this new context, the
design of the building automation system (i.e. the embed-
ded processors and networks supporting the building op-
erations, and the software running on them) is non-trivial.
Control algorithms become multi-input, multi-output, hy-
brid and predictive, as opposed to single-input single-output
controllers coordinated by simple switching conditions as
today (and mainly dictated by standards). Moreover, several
sub-systems such as HVAC, lighting, vertical transportation
and fire and security will interact through the network to
allow information sharing.

In this paper we focus on a design flow for building
automation systems that bridges the gap between a desir-
able design entry point – at a high abstraction level using
model-based design tools such as Simulink [7] – and the
available back-end tools able to generate low-level code.
It enables the integration of models from different high-
level languages, allowing the interaction between domain
experts. Further, it automatically optimizes the implemen-
tation of the control algorithms on a distributed platform by
selecting computation and communication resources, and
by performing code generation while meeting the specifica-
tion.

2 Proposed Design Flow

The design flow proposed in this article consists of a
front-end and a back-end. The front-end is used to model
the system including the control algorithms and the behav-
ior of the environment. The back-end includes a set of tools
that, given the specification of the control algorithms and a
set of available computation and communication resources,
automatically refines the specification into an optimal dis-
tributed implementation. The design flow is shown in Fig-
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ure 1. The front-end and the back-end exchange models
over an intermediate format (IF). The introduction of this in-
termediate layer is necessary to build a design flow which is
general with respect to the user input (e.g. Simulink, Mod-
elica [5] and LabVIEW [6]), and to the output code (e.g.
C and EIKON [3]). Using an IF, pieces of the input speci-
fication expressed in different languages can be composed.
This feature will hopefully foster collaboration among ex-
perts in different disciplines who could exchange models
and evaluate their system taking into account the interac-
tions with other sub-systems. The intermediate level allows
targeting several implementation platforms. Building con-
trol system vendors usually provide architecture-specific
languages for programming their platforms, along with tool
chains for simulation, analysis, debugging and code gener-
ation. These tools can be leveraged by translating the in-
termediate format into the vendor specific language. Com-
pared to providing customized design flows from each high-
level language to each architecture specific language, the in-
termediate format reduces the number of translators needed
from a quadratic number to a linear number.

The translation process may become very involved given
the expressiveness of model-based languages. Our ap-
proach to deal with the complexity of this step is to define
a library of primitives at the intermediate level designed to
capture a large class of building control algorithms and that
can be extended by users. This library is then mirrored by
equivalent libraries defined in the source languages. The set
of models that can be translated into the intermediate format
is the one obtained as composition of the library elements.
This architecture simplifies the translation process and will
be described later.

The back-end is responsible for mapping the functional
model described in the intermediate format to the archi-
tectural model that captures the implementation platform.
Specifically, the part of the functional model to be mapped
is a control algorithm. The architecture platform captures
computation resources (e.g. terminal control units, em-
bedded processors and workstations), communication re-
sources (e.g. wired buses and wireless links), sensors (e.g.
temperature sensors and CCTV video cameras) and actua-
tors (e.g. valves and switches). During mapping, the func-
tional model is abstracted into the composition of functional
tasks and messages among them. There may be constraints
that come with the specification such as latency, energy and
cost. The architecture platform is described in the form of a
library of available architectural components that are char-
acterized by their functionality, cost, performance, etc. The
plant model is abstracted into a set of physical constraints
imposed on the system. The mapping problem is cast into
an optimization problem that is solved by algorithms de-
signed to find the best mapping, with respect to a set of ob-
jective functions, from the tasks and messages in the func-

tional model to the components in the architectural model,
while satisfying a set of design constraints.

After mapping, code needs to be generated for final de-
ployment. The third step of the design flow is software syn-
thesis that starts from the mapped design and includes code
generation for each processor in the distributed system, and
communication interface synthesis for process communica-
tion. During code generation, we translate the functional
tasks mapped onto each processor to either generic C code
– if compilation tools are available for the processor – or
a vendor specific language for which the code generator
is usually provided. The synthesis of communication in-
terfaces is essential to ensure the correctness of the sys-
tem when the architecture platform does not directly sup-
port the semantics of the functional model. For instance,
a synchronous Simulink model is not naturally supported
by an asynchronous architecture that is common in building
control systems. In this case, the generated communication
interfaces help to ensure the synchronous functionality is
correctly preserved on the asynchronous platform.

3 Step 1: Intermediate Format Translation

In the first step of the proposed design flow, models cap-
turing the specification of the control algorithms and of the
environment are translated into an intermediate representa-
tion. This representation is based on a language called inter-
mediate format (IF) that should facilitate the other steps in
the design flow, namely mapping and code generation. Be-
cause the type of specifications that we are interested in are
in general hybrid systems [16] with multiple semantics, the
IF representation may become very complex [23, 20], and
thus not directly usable in the mapping and code generation
steps. In the envisioned final form of our design method, IF
will be manipulated and partitioned to make the mapping
and code generation steps effective. In this paper that is a
first step towards the ideal scenario, we restrict the interme-
diate format to dataflow semantics [15] which is amenable
to efficient mapping and code generation. We retain the
nomenclature introduced in [23] as we plan to extend this
work to more general intermediate representations. In par-
ticular, each process (also called actor) is characterized by
an input-output function described by a set of “equations”.
When the process is scheduled to run, the equations are exe-
cuted according to an order determined by an equation man-
ager (EM) that is local to the process. The set of processes
in the system is scheduled by an equation resolve manager
(ERM). Processes communicate over media that, in the re-
stricted case dealt with in this paper, are implemented as
FIFOs.

To enable fast translations to IF, we define a domain spe-
cific IF library for HVAC control systems in buildings, and
we export the library to different specification languages.
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Figure 1. Design flow for building automation and control

We reviewed 71 HVAC-related component models in the
GPL language from Johnson Controls [8], 70 in Automated
Logic EIKON language [9], 42 in Honeywell Spyder [10],
and 59 in the HVAC library defined by the Lawrence Berke-
ley National Laboratory [26]. Based on these information,
we defined a set of basic components used in HVAC control
systems and the corresponding processes in the IF, includ-
ing:

• Mathematical functions: ADD, SUB, MUL, DIV,
ABS, SQRT, MIN, MAX, SUM, AVG, INTEGRA-
TOR, DERIVATIVE, GAIN.
• Logic functions: INV, AND, OR, XOR.
• Signal processing functions: SWITCH, LIMIT, SPAN,

COMP, PID.
• Time functions: TIME, DATE, DELAY, TIMER, OC-

CUPENCYSCHEDULE.
• Psychrometric functions 1: ENRH, WBTRH, DPTRH,

ENW, WBTW, DPTW.

As an example, the PID component in our IF library is
described as follows:

PID {
parameter double Kp, Ki, Kd, Kc;
parameter bool outMin, outMax;
port double setPoint, var, out;
equations{
err = setPoint - var;
sum = Kp*err + Ki*int(err) + Kd*dev(err)

+ Kc*diff(out,sum);
out = (sum>outMax)*outMax

+ (sum<outMin)*outMin

1The psychrometric functions describe the thermodynamic properties
of moist air that are important for the comfort level of human. The IF
library includes enthalpy calculators ENRH and ENW, wet-bulb tempera-
ture calculators WBTRH and WBTW, and dew point temperature calcula-
tors DPTRH and DPTW.

+ (sum<=outMax && sum>=outMin)*sum;
}

}

The PID component uses anti-windup to avoid integra-
tor windup when the actuator saturates because of its phys-
ical limitations (e.g. a control valve cannot go beyond fully
open or fully closed). It contains three equations that are
scheduled in the order in which they appear.

Each component may have slightly different implemen-
tations in each language. For instance, there are many dif-
ferent algorithms for PID controllers besides the one de-
fined above. We chose a few common cases in our compo-
nent definitions as a proof of concept. Additional compo-
nents can be added to the library by designers. Also note
that the library contains components at different abstrac-
tion levels. A PID controller is at a higher level of abstrac-
tion than the mathematical functions and can be constructed
from them. This enables translations at different abstraction
levels and provides a trade-off between accuracy and com-
plexity, as demonstrated later in the case study.

3.1 Case Study of IF Translation

Figure 2. Room temperature control system

We use a temperature control system as example
throughout the paper. The functional model captures a two-
level control algorithm as shown in Figure 2. The higher
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level LQR (linear-quadratic regulator) controller determines
the set points for lower level PID (proportional-integral-
derivative) controllers. The LQR coordinates among mul-
tiple rooms to optimize the total energy consumption while
maintain a certain comfort level. The PIDs track the set
points and interact with the physical environment. This
functional model is initially described in Simulink.

In this part of the case study, we show how IF is used to
import models from a specification language, and to gener-
ate code. We mentioned earlier that several vendor specific
languages and tool chains are available for code generation
on embedded targets. Thus, we use the term “code gener-
ation” here to denote the exporting of a model from the IF
to a given target language (that can be directly transformed
into runnable code using the vendor tool-chain). Consider
Simulink as input specification and the G language from
National Instruments (NI) as output code, as shown in Fig-
ure 3. NI provides both simulation and C code generation
for the G language.

Simulink Model

IF Model

PID

PID

PID

LQR

eqn(…)
eqn(…)
eqn(…)

…
 …

ERM

EM … …

LabVIEW Model

Figure 3. Case study for IF translation

The IF model shown in Figure 3 consists of one LQR
process, three PID processes (in darker color), communi-
cation media between processes, as well as ERM and EM
schedulers. The translations from Simulink to the IF, and
from the IF to LabVIEW are straightforward: there exists
a one-to-one correspondence between the components in
each language and the components in the IF library. The
scheduling in Simulink for the dataflow type semantics we
consider is based on the causality relation between compo-
nents. This is translated to the ERM scheduling in the IF,
then translated to the component scheduling in LabVIEW,
which is also based on causality relations. The Runge-Kutta
ODE solver used in Simulink employs a fixed time step and
can be translated to the scheduling in ERM and EMs, then
translated to the Runge-Kutta solver available in LabVIEW.

The plant model that captures the physical environment is
not translated since our focus is on the control system.

In order to validate the accuracy of our translations, we
directly compared the simulation results of the Simulink
model and the LabVIEW model. The plant model from
Simulink is imported to LabVIEW to provide a fair com-
parison of the control system part. In Figure 4, the room
temperature and the air flow level of Room 1 from the sim-
ulations of the two models are shown. The other rooms have
similar plots. The length of the simulation is one day. As
shown in figure, the results from the two models are fairly
close to each other.
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Figure 4. Comparison of Simulink and Lab-
VIEW models

We observed that the differences between the simula-
tions mainly came from the different implementations of
the PID controllers. The PID component in the IF library
faithfully implements the PID controller in Simulink. How-
ever, in the translation from IF to LabVIEW, we could not
find a PID controller implementing the same control al-
gorithm. We had to choose a similar PID in LabVIEW
that also uses anti-windup but with different algorithm flow.
Generally speaking, this difference is a result of translat-
ing at higher level of abstraction, where higher level com-
ponents are viewed as basic units. To reduce the differ-
ence, we can break down those components to lower level
of abstraction, where more information about the compo-
nents is exposed and can be potentially maintained. In this
case, instead of translating at the PID level, we can break
down the PID to lower level components, translate them
from Simulink through IF to LabVIEW, and then assem-
ble those lower level LabVIEW components to construct a
PID in LabVIEW. This process is shown in Figure 5.

The comparison of the translations at different abstrac-
tion levels is shown below. Table 1 shows the absolute dif-
ferences of the room temperatures between Simulink and
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Figure 5. IF translation at lower level

LabVIEW simulations at two different abstraction levels.
Table 2 shows the relative differences of the cumulative air
flow levels. We can see that the differences are reduced by
101 to 103 times.

Table 1. Comparison of room temperature
Level Room1 Room2 Room3

Avg. High 0.0538 0.0538 0.0744
differences (oC) Low 0.00202 0.00202 0.00415

Max. High 0.741 0.741 0.797
differences (oC) Low 0.0555 0.0555 0.0880

Table 2. Comparison of cumulative air flow
Level Room1 Room2 Room3

Cumulative air flow High 1.29 1.29 1.55
level differences (%) Low 6.26 6.26 8.15

×10−3 ×10−3 ×10−4

4 Step 2: Mapping between Functional and
Architectural Models

The mapping step selects computation resources, allo-
cates control functions to processors, and synthesizes the
communication network. Formulated as an optimization
problem, the mapping step minimizes a set of objective
functions subject to design constraints.

4.1 General Mapping Flow

The functional model in IF consists of processes, me-
dia and schedulers. For mapping purposes, processes and
media are abstracted into tasks and messages, respectively,
by hiding their internal implementation and computing cost

and performance metrics of interest. For example, the equa-
tions inside a process are used to estimate the execution
time of its corresponding task on various processors. How-
ever the real computation sequence is abstracted away. The
schedulers in the IF model are not explicitly represented
in the mapping, but the causality relations that must be
taken into consideration when performing scheduling are
reflected in the connections between tasks through mes-
sages. Formally, the functional model is represented as a
directed graph F = (T ,M), where T is the set of tasks
and M is the set of messages that are communicated be-
tween tasks.

The architecture platform captures the computation and
communication resources that can be used to realize the
functional specification. It is defined as a library of ar-
chitectural components A = {Ak = (Pk,Lk) : Pk ⊆
P, Lk ⊆ L}, where a component Ak is the composition of
a set of basic computation components Pk through a set of
basic communication components Lk. The set P contains
all available basic computation components such as sensors,
actuators and processors. Similarly, the set L contains all
basic communication components such as wired or wireless
communication links, routers and repeaters. Labeling func-
tions are defined to associate components in P and L with
parameters, representing certain characteristics of the com-
ponents such as performance, cost, bandwidth and latency.
Note that P and L can contain virtual components, which
are place holders that can be refined to real components in
later design stages. The parameters associated with the vir-
tual components represent design requirements rather than
implementation.

The constraints and objective functions of the mapping
problem may include the cost of the electronic system, data
acquisition frequencies, real-time constraints such as end-
to-end latencies from sensors through controllers to actu-
ators, utilization constraints on computation and communi-
cation resources. Further, the building floorplan and geome-
try impose constraints on the locations of sensors, actuators
and processing units, and wire layout.

Our mapping flow is shown in Figure 6. A three-step
approach is used to cope with complexity. In the first step,
a set of computation components PS is selected from the
architecture platform and connected by virtual communi-
cation components LS . This constitutes an architectural
modelAS onto which the functional model can be mapped.

In the second step, the tasks in the functional model are
allocated to the computation components in the architec-
tural model, and if needed, the priorities of the tasks are
assigned. The messages are temporarily allocated to the vir-
tual communication components. The output is the mapped
modelGC = (VC , EC), where VC denotes the computation
components with tasks allocated onto them and EC denotes
the message-allocated virtual communication components.
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In some cases, when complexity is manageable, the first and
second step can be combined and solved together, as shown
later in our case study.

Finally, in the third step, the virtual communication com-
ponents are synthesized to a communication network, in
which the communication between two computation com-
ponents may flow through multiple links, routers and re-
peaters, and each link may be shared across multiple end-to-
end communications. The output GI is the eventual imple-
mentation of the functional model on the architecture plat-
form.

In our flow, we optimize the computation first because
the complexity of optimizing computation and communica-
tion together is prohibitive for typical industrial size sys-
tems, and a fixed set of computation components greatly
reduces the complexity of communication optimization. If
needed, these steps can be iterated to improve the quality of
the solution.

Task Allocation and Priority Assignment

Communication Network Synthesis

AS = (PS, LS)

Computation Components Selection

Functional Model
F = (T, M)

Architecture Platform
A = { Ak=(Pk, Lk) }

Design Constraints 
and Objectives

GC = (VC, EC)

GI =  (VI, EI)

Figure 6. Mapping flow

4.2 Building Mapping Formulation and
Algorithm

The mapping flow above is generic: when given specific
design requirements and platforms, each of the three steps
in the flow can be formulated accordingly and solved by
customized algorithms. In this section, we target a typi-
cal building design case: given the functional model F , the
architecture platform A, and a set of design constraints in-
cluding building floorplan, candidate locations of sensors,
actuators, embedded processors and routers, end-to-end la-
tency deadlines on selected paths, utilization and memory
constraints on embedded processors, we explore the design
space containing the selection of computation components,
allocation of tasks to embedded processors, assignment of
task priorities, and communication network, to minimize
system cost, which includes the prices of the components

and the installation cost.
For this specific problem, we combine the first and sec-

ond step in the mapping flow and then perform communi-
cation network synthesis.

4.2.1 Computation Components Selection, Task Allo-
cation and Priority Assignment

The set of candidate computation components is denoted as
P = {p1, p2, ..., pn}, which includes sensors, actuators and
embedded processors. In our use case, we assume for each
sensing or actuating task in the functional model, one sen-
sor or actuator is selected manually from the library by the
designer, depending on the physical environment and de-
sign requirements. For the selection of processors, there are
usually various options on how many and what type should
be used. As an example, for the functional model shown in
Figure 2, we can either select a single powerful processor
for running all PID and LQR tasks, or select multiple less
powerful but cheaper processors (in the extreme case, one
processor can be used for each PID or LQR block). We de-
note the set of candidate processors as P ′, a subset of P .
For each processor pi ∈ P ′, Vpi denotes its cost including
both price and installation cost, Rpi denotes its maximum
available instruction memory, and Upi denotes its utiliza-
tion upper bound, which represents the maximum fraction
of time the processor can be busy running functional tasks.

The set of tasks in F is denoted as T = {τ1, τ2, ..., τm}.
Each task τi is labeled with period Tτi . Cτi,pj denotes the
worst case execution time of task τi on computation compo-
nent pj , which can be obtained via either static analysis or
dynamic profiling. Mτi,pj denotes the required instruction
memory for τi on pj . We denote the set of tasks that must
be mapped onto processors as T ′, which is a subset of T
excluding sensing and actuating tasks (as explained above,
they are one-to-one mapped to manually chosen sensors and
actuators).

We use Boolean variable aτi,pj to represent whether task
τi is mapped onto computation component pj (1 if mapped,
0 otherwise). Pτi denotes the set of candidate computation
components that τi can be mapped to. If τi is a sensing
or actuating task, value of aτi,pj is decided by the man-
ual selection and Pτi is set to the chosen sensor or actua-
tor. Boolean variable hτi,τj denotes whether τi and τj are
mapped onto the same computation component. Boolean
variable spj denotes whether processor pj ∈ P ′ is selected.

The communication between tasks occurs through a set
of messagesM = {m1,m2, ...,ml}. srcmi and dstmi de-
note the source task and destination task of message mi re-
spectively. Boolean variable gmi is 1 if mi is a global mes-
sage, i.e. srcmi and dstmi are mapped to different compo-
nents, otherwise gmi is 0. Variable lmi denotes the worst
case transmission delay of mi, which represents the largest
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time interval from srcmi sendingmi to dstmi receivingmi.
The value of lmi depends on which computation compo-
nents srcmi and dstmi are mapped to, and the communi-
cation latency between the components. We use Lpi,pj to
denote the communication latency from computation com-
ponent pi to pj , which can be estimated based on the given
physical locations of sensors, actuators and candidate pro-
cessors. Note that this is only a high level estimation of the
latency without the details of communication network. In
the case that pi = pj , Lpi,pj represents the local communi-
cation latency between two tasks on the same computation
component.

A path ρ = (τρ,1,mρ,1, τρ,2,mρ,2, ...,mρ,k−1, τρ,k) in
the directed graph of functional model F is an ordered in-
terleaving sequence of tasks and messages. The worst case
end-to-end latency of a path ρ is denoted as lρ. The deadline
of path ρ, denoted by dρ, is an application requirement that
may be imposed on selected paths. A typical path for BAC
systems would start from a sensing task, pass through tasks
running control algorithms, and end at an actuating task.

Let rτi denote the worst case response time of a task τi,
which is the largest time interval from the activation of the
task to its completion. The worst case end-to-end latency of
a path can be computed as follows.

lρ =
∑
τi∈ρ

rτi +
∑
mi∈ρ

lmi +
∑

mi∈ρ∧mi∈GS
Tdstmi

where GS is the set of all global messages. The periods of
the destination tasks of global messages are included in the
latency because of the asynchronous nature of the commu-
nication. In the worst case, the input global message of a
periodical task may arrive immediately after the task was
just activated and has to wait for an activation period of the
task before it can be read. The formula is similar to one
in [13, 29], except that here message latencies are more ab-
stract since we do not have the details of the communication
network at this stage of the design.

The computation of worst case task response time rτi de-
pends on the scheduling policy of the processor to which the
task is mapped. In our case study, we assume the processors
employ a preemptive scheduling based on pre-assigned pri-
orities. Under this assumption and in the case of rτi ≤ Tτi ,
rτi can be computed as follows, based on the analysis from
[13, 17].

rτi = Cτi +
∑

τj∈hp(τi)

⌈
rτi
Tτj

⌉
Cτj

where hp(τi) refers to the set of higher priority tasks on the
same processor.

A mixed-integer linear programming (MILP) formula-
tion of the optimization problem is then:

∀τi ∈ T ,
∑

pj∈Pτi

aτi,pj = 1 (1)

∀τi ∈ T , pj /∈ Pτi , aτi,pj = 0 (2)

∀pj ∈ P ′,
∑
τi∈T ′

aτi,pj ≥ spj (3)

∀τi ∈ T ′, pj ∈ P ′, aτi,pj ≤ spj (4)

∀pj ∈ P ′,
∑
τi∈T ′

aτi,pj ∗ Cτi,pj/Tτi ≤ Upj (5)

∀pj ∈ P ′,
∑
τi∈T ′

aτi,pj ∗Mτi,pj ≤ Rpj (6)

∀pk ∈ P, aτi,pk + aτj ,pk − 1 ≤ hτi,τj (7)
∀pk, pq ∈ P, 2− aτi,pk − aτj ,pq ≥ hτi,τj (8)

∀mi ∈M, 1− hsrcmi ,dstmi = gmi (9)
∀ρk, lρk ≤ dρk (10)∑

τi∈ρk

rτi +
∑
mi∈ρk

(lmi + gmi ∗ Tdstmi ) = lρk (11)

∑
pk,pq∈P

fsrcmi ,pk,dstmi ,pq ∗ Lpk,pq = lmi (12)

aτi,pk + aτj ,pq − 1 ≤ fτi,pk,τj ,pq (13)
aτi,pk ≥ fτi,pk,τj ,pq (14)
aτj ,pq ≥ fτi,pk,τj ,pq (15)∑

τj∈T

∑
pk∈P

zτi,τj ,pk ∗ Cτj ,pk

+
∑
pj∈P

aτi,pj ∗ Cτi,pj = rτi (16)

yτi,τj ,pk −M ∗ (1− oτi,τj ) ≤ zτi,τj ,pk ≤ yτi,τj ,pk (17)
zτi,τj ,pk ≤M ∗ oτi,τj (18)

xτi,τj ,pk −M ∗ (1− aτi,pk) ≤ yτi,τj ,pk ≤ xτi,τj ,pk (19)
yτi,τj ,pk ≤M ∗ aτi,pk (20)

uτi,τj −M ∗ (1− aτj ,pk) ≤ xτi,τj ,pk ≤ uτi,τj (21)
xτi,τj ,pk ≤M ∗ aτj ,pk (22)

0 ≤ uτi,τj − rτi/Tτj < 1 (23)
rτi ≤ Tτi (24)

∀τi, τj ∈ T ′, oτi,τj + oτj ,τi = 1 (25)
∀τi, τj , τk ∈ T ′, oτi,τj + oτj ,τk − 1 ≤ oτi,τk (26)

min
∑
pj∈P′

spj ∗ Vpj (27)

In this MILP, (1) and (2) enforce that each task should
be mapped to one computation component. Equation (3)
and (4) define the selection of processors. Equation (5) and
(6) set utilization and memory constraints on processors.
There might be other types of resource constraints on the
processors, for instance, power consumption or input/output
number constraints. With proper abstraction, they can be
similarly represented.

Equations (7) to (9) define whether a message is a global
message. Equations (10) and (11) set up the end-to-end la-
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tency constraints on paths. Equations (12) to (15) compute
the message latency. Equations (16) to (24) compute the
worst case task response time. The typical “big M” formu-
lation in MILP programming is used to linearize the rep-
resentation (by introducing a large constant M , conditional
constraints can be linearized, e.g. either (17) or (18) will
take effect depending on the value of oτi,τj being 1 or 0).
uτi,τj is an integer variable. Note that if τi is a sensing or
actuating task, the computation of rτi becomes trivial. Sim-
ilarly, for the computation of gmi and lmi if the source or
destination task of mi is either a sensing or actuating task.
Equations (25) and (26) assure the correct assignment of
priorities, where oτi,τj is 1 if τj has a higher priority than
τi, 0 otherwise. We only explore the priorities for tasks
mapped onto processors since sensing and actuating tasks
are mapped one-to-one. Equation (27) is the objective func-
tion. It does not include the costs of sensors, actuators and
communication network. Since we assume sensors and ac-
tuators are chosen manually, their costs are not in the ob-
jective function. The communication network will be op-
timized later in the mapping flow, and we do not have an
accurate way to estimate its cost at this stage yet. In our fu-
ture work, we plan to extract high level information of the
communication networks and include an abstract model of
their cost in the MILP formulation.

By solving the MILP above, we select processors, allo-
cation of tasks and priority assignment of tasks. These will
be used for constructing a mapped model, which serves as
the input of communication network synthesis.

4.2.2 Communication Network Synthesis

As shown in Figure 6, the communication network synthe-
sis step takes a mapped model GC = (VC , EC) as input,
and refines its virtual communication components EC to a
specific network of communication links, routers and re-
peaters.

We use COSI (Communication Synthesis Infrastructure)
[21]2 for our communication network synthesis. The MILP
introduced above provides the inputs to COSI. Specifically,
the selected computation components and allocated tasks
define VC in graph GC . Each computation component is
labeled with parameters for representing certain character-
istics such as cost, physical location, etc. The virtual com-
munication components EC on which the messages are al-
located can be deduced from the MILP results. For two
computation components, if there are tasks on them ex-
changing global messages, a virtual communication compo-
nent is needed to connect them, and those global messages
are naturally allocated to this virtual communication com-
ponent. The traffic load and latency requirement on each

2For more details of COSI formulation and algorithms, please refer to
[21, 19, 22].

virtual communication component can then be deduced.

4.3 Mapping Case Study

We applied our mapping formulation and algorithm to
the room temperature control example shown in Figure 2.
To test the scalability of the algorithm, we extended the
number of rooms from 3 to more than 40, while keeping
the same structure. The building floorplan and physical
constraints are from a real office building. The functional
model consists of 61 sensing tasks, 1 LQR task, 61 PID
tasks and 61 actuating tasks. There are 61 paths from sens-
ing task to LQR to PID then to actuating task. The total
number of messages is 183. The architecture platform is
characterized in Table 3, part of which is the same as in
[19]. We use ARCNET [1] daisy chain buses as communi-
cation library.

Table 3. Characterization of a realist architec-
ture library for BAC systems

Component Performance Cost
Sensor Delay: 12.6µs Price: $110

Inst: $50
Actuator Delay: 12.6µs Price: $200

Inst: $50
Processor1 Speed: 16MHz Price: $600

Memory: 512KByte Inst: $300
Processor2 Speed: 40MHz Price: $1400

Memory: 3MByte Inst: $500
Bus(twisted-pair) Delay: 5.5ns/m Price: $0.6/m

Bandwidth: 156Kbps Inst: $7/m
Router Delay: 320ns Price: $500

Inst: $240

The MILP is solved using CPLEX 11.0 [4] on a 3.06GHz
machine with 3G RAM. The timeout limit is set to 1000 sec-
onds. After the MILP solving, two Processor1 and one Pro-
cessor2 are selected, as shown in Figure 7. The LQR task
is mapped to the only Processor2 which is in the middle of
the building floor. All sensors are connected to it since the
sensing tasks communicate with LQR task through global
messages. The PID tasks are distributed over the three pro-
cessors, and are connected to actuating tasks, correspond-
ingly. Figure 8 shows the final result after communication
network synthesis.

The cost of the final solution breaks down as follows:
$3700 for the processors, $25010 for sensors and actuators,
$18076.31 for the communication network including wires
and routers. As a comparison, if we restrict our selection
of processors to type Processor2, the cost of processors in
the final solution will increase to $3800 (two Processor2
are selected), and the cost of the communication network
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Figure 7. Mapping result after MILP

Figure 8. Final mapping result

will increase to $20196.22 (the final layout is not shown
here due to page limit). In this particular example, differ-
ent selections of computation components result in similar
cost of processors, however lead to quite different cost of
the communication network. This aspect demonstrates the
importance of optimizing both computation and communi-
cation of the system together.

5 Step 3: Software Synthesis

After the functional model is mapped onto the architec-
ture platform, the next step in the design flow is software
synthesis, which includes code generation for each individ-
ual processor and the synthesis of communication interfaces
between processors.

We leverage vendor tools or general compilers for code
generation of individual processors. For instance, Lab-
VIEW provides code generators for a variety of embedded,
mobile and touch panel targets. However, most of these
tools do not consider the communication semantics between
processors and its impact on the generated software. In
our work of software synthesis, we focus on synthesizing
the communication interfaces of processors after their ini-
tial code is generated individually.

The goal of communication interface synthesis is to pre-
serve the semantics of the input functional model when the
architecture does not directly support it. A typical case in
BAC is that the functional model is synchronous, which
eases the design by orthogonalizing functionality and tim-
ing, while the architecture platform is distributed and asyn-
chronous. We propose a communication interface synthe-

sis approach to guarantee that the distributed asynchronous
implementation has the same behavior as the original syn-
chronous model. Our work extends the methods from
[25, 14].

5.1 Communication Interface Synthesis

A method is proposed in [25] to implement synchronous
functional models on a Loosely Time Triggered Architec-
ture (LTTA) [11] while preserving stream equivalence. In
LTTA, the computation components execute and access the
communication medium in a quasi-periodic fashion, i.e.
they are triggered periodically by local clocks that are not
synchronized but deviate from each other by bounded drift
and jitter. The semantic preservation method in [25] guar-
antees the data value stream on any communication link in
LTTA is the same as in the synchronous model. To do so,
first the synchronous model is mapped onto an intermediate
layer called Finite FIFO Platform (FFP), which consists of
a set of sequential processes communicating via bounded
FIFO queues. A process skips a round when any of its in-
put queues is empty or any of its output queues is full. By
enforcing this, it is guaranteed that there is no data repeti-
tion or data loss on the communication flows between pro-
cesses, and stream equivalence is preserved. Then the FFP
model is mapped onto the LTTA platform. Specifically, the
FFP queues are implemented as CbS (Communication by
Sampling) channels with FFP APIs mapped to CbS APIs.
The FFP processes are directly translated to the processes
(tasks) on LTTA nodes, only by replacing the APIs of ac-
cessing FFP queues with the APIs of CbS.

In the building automation domain, the architectures typ-
ically follow the same loosely time triggered paradigm,
where periodic sampling from the sensors and discrete-
time control are common for applications such as HVAC.
Therefore, we can leverage the method from [25] in our
communication interface synthesis. However, the assump-
tion that every process (or task after mapped to LTTA) can
freely skip a round does not hold in our case if we want
to preserve stream equivalence. Specifically, the sensing
tasks in the BAC systems periodically sample inputs from
the constantly-changing physical environment. Skipping a
round on these tasks means the “old” environment inputs
will be overwritten by the “new” inputs, and the data stream
is no more equivalent to the synchronous model. Therefore,
to preserve the synchronous specification, we set the fol-
lowing requirements on the system implementation:

1. A sensing task never skips a round. We assume the
sensing tasks are activated periodically according to
the local clocks, and send the sampled data in a non-
blocking fashion.

2. There is no data loss or repetition on any communica-
tion link in the system.
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3. An actuating task can skip a round when it is activated
if the input is not ready. However, it has to fire exactly
once between any two consecutive fires of its corre-
sponding sensing task to ensure the physical environ-
ment is consistent with the synchronous specification,
assuming the sensing and actuating task have the same
period in the synchronous model (the cases that they
have different periods are discussed later). Here we ig-
nore the impact of the exact time point at which the
actuation happens between the two firings of the sens-
ing task.

To satisfy requirement 2, we first add the control mecha-
nism from [25] in the implementation of non-sensing tasks
to allow them skip rounds when their input is not ready
or output is full. We assume the CbS channels are imple-
mentable on our architecture platform so the tasks can check
the availability of inputs/outputs. For discussion on how to
implement the CbS primitives, please refer to [28, 27]. In
addition, since the sensing tasks cannot skip rounds, we set
timing constraints on communication links affected by them
to avoid data loss, based on the analysis from [14]. We then
further extend the analysis and set additional timing con-
straints on path latencies for completing the conditions of
satisfying requirement 2, and for satisfying requirement 3.

Next we explain how timing constraints are set on com-
munication links and path latencies for meeting the require-
ments.

5.2 Timing Constraints for Preserving
Synchronous Semantics

After mapping, the functional tasks are allocated onto
the computation components, which are connected by a
communication network that includes communication links,
routers and repeaters. For the analysis in this section, we re-
gard computation components, routers and repeaters all as
nodes that communicate to each other through communica-
tion links.

In a loosely time trigged distributed system, each node
has a local clock that triggers all the periodic tasks on that
node. For a task τi, the n-th tick of interest for the task,
denoted by tτi(n), is affected by clock drifts and jitters and
can be characterized in Formula (29) and (28), similarly as
in [14].

tτi(n) ∈ [t̂τi(n), t̂τi(n) + Jτi ] (28)
t̂τi(n+ 1)− t̂τi(n) ∈ [Tmτi , T

M
τi ],

Tmτi = Tτi(1− δmτi ), T
M
τi = Tτi(1 + δMτi ) (29)

where Tτi is the reference period of the task, and t̂τi(n)
is an auxiliary sequence satisfying the second equation.
δmτi ∈ [0, 1) and δMτi ∈ [0, 1) are the relative bounds of

the clock drift. We assume all the tasks located at the same
node have the same bounds of the clock drift. We use Jmτi
and JMτi to denote the best and worst case of the clock jitter
respectively.

To preserve the synchronous semantics, we first set tim-
ing constraint on communication links to guarantee there
is no data loss (i.e. message being overwritten) when the
source task cannot skip rounds, based on the analysis from
[12, 14]. Specifically, for a pair of source task τw and desti-
nation task τr communicating through global messages on a
communication link, Formula (30) guarantees that any mes-
sage mg from τw is read by τr during its valid interval, i.e.,
from mg arriving at τr to it being overwritten by the next
message from τw.

TMτr + JMτr < Tmτw + (Jmτw + lmmg)− (JMτw + lMmg) (30)

lmmg and lMmg are the best and worst case latency of message
mg, which can be estimated based on the communication
protocol and media. The right hand side is the lower bound
of the valid interval. The formula ensures that there is at
least one activation of τr during the valid interval. No buffer
is assumed and extension can be made for the cases with
fixed number of buffers.

In our systems, timing constraint (30) first has to be set
on all communication links between sensing tasks and their
successors since the sensing tasks cannot skip rounds. Fur-
thermore, as the successors need to consume the messages
from the sensing tasks in time, they cannot skip freely them-
selves. This reasoning can be applied to their successors as
well. Therefore, a conservative approach is to set constraint
(30) on all communication links that are in the “fan out” of
the sensing tasks, which can be deduced from the functional
model graph. Note that some of the messages between tasks
are local messages, for which (30) becomes trivial.

The control mechanism from [25] and timing constraint
(30) are not sufficient for preserving the synchronous se-
mantics in our systems. To satisfy requirement 2 and 3, we
set additional constraints on path latencies with respect to
the local clocks of sensing tasks. First, an actuation deci-
sion may require inputs from multiple sensors. In this case,
paths from different sensing tasks will converge at a certain
task, which reads data from multiple input queues before it
can fire. To ensure that the data on one input queue will not
be overwritten because of the delay on another input queue,
we set the following constraint: For any two sensing tasks
τi and τj whose data is needed at a common task τk,

∀n, lτi→τk < tτj (n+ 1)− tτi(n) (31)

where lτi→τk is the latency for any path from τi to τk, tτi(n)
is the n-th tick of the local clock for τi, and tτj (n + 1) is
the (n + 1)-th tick of the local clock for τj . Note that if τi
is not a sensing task but τj is, the constraint is still needed
(not vice versa since non-sensing tasks can skip rounds).
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In addition to avoiding data loss on communication links,
we need to ensure that the actuators can fire in time to im-
pact the physical environment as defined in requirement 3.
For this, we set end-to-end latency constraints on paths from
sensing tasks to actuating tasks, to make sure the actua-
tors can fire before the next activation of its corresponding
sensing tasks. Specifically, for a path ρ in the functional
model that contains kρ unit-delay tasks (each delays one
sampling period of the source sensing task), the end-to-end
latency from the sensing task to the actuating task should be
bounded as shown in Formula (32), where srcρ is the source
sensing task of the path. The worst case end-to-end latency
lρ can be computed as in Equation (11). Since software
synthesis is done after mapping, we will be able to have an
accurate estimation of all the parts in Equation (11), includ-
ing message latencies.

lρ < (kρ + 1) ∗ Tmsrcρ (32)

In the case of no unit delay task, we have a simple constraint
that lρ < Tmsrcρ , and it can be deduced that if this is satisfied,
all communication links on ρ satisfy Equation (30).

We have assumed all sensing and actuating tasks have the
same period in the functional model. If this is not the case,
constraint (32) need to be modified. Assuming on a path,
TA/TS = N , where TA is the period of the actuating task
and TS is the period of the sensing task (N is an integer),
the actuator has to fire exactly once within N fires of the
sensing task, i.e., lρ < (kρ + 1) ∗N ∗ Tmsrcρ .

Given a mapped system, to satisfy constraint (30), (31)
and (32), we may need to adjust task periods and the drifts
of local clocks. For instance, constraint (31) sets a bound on
how much the local clocks of sensors can drift with respect
to each other, which can be controlled through the use of
synchronization mechanisms between local clocks.

Note that in the mapping step, we carried out the opti-
mization using the task periods specified in the synchronous
model, and the preset end-to-end latency constrains without
consideration of semantic preservation. If the changes of
task periods in software synthesis are significant, the map-
ping step may be suboptimal. In this case, we can either it-
erate between these two steps, or add the timing constraints
to the mapping formulation and solve everything together
(with a trade-off between optimality and complexity). How-
ever in real systems, it is common that the clock drifts, jit-
ters and message latencies are all considerably smaller than
the sampling periods, therefore the changes on periods in
this step will not be too significant.

5.3 Case Study of Communication Inter-
face Synthesis

We conducted experiments on the room temperature con-
trol example to demonstrate the idea of communication in-

terface synthesis. We first model a mapped system in Lab-
VIEW with the synthesized communication interfaces, then
compare it through simulation to the functional specifica-
tion in LabVIEW, which is obtained from IF translation as
shown in Figure 5.

Specifically, the mapped model in LabVIEW is shown
in Figure 9. Each of the PIDs and LQR is mapped to a
different processor, abstracted in LabVIEW as a simulation
loop that has its own local clock. Each actuating task is also
mapped to a separate simulation loop. For simplicity, all
sensing tasks are captured in the same simulation loop and
assumed to have the same clock. The plant model is also
described in this simulation loop and provides data to the
sensing tasks. Control mechanism for skipping rounds as in
[25] is added to all tasks except the sensing tasks.

LQR

PID1

PID2

PID3

Proc1

Proc2

Proc3

Proc4

Plant&
Sensors

Actuator1

Actuator2

Actuator3

Figure 9. Mapped LabVIEW model for the
temperature control system

The local clocks are set to have no clock drifts. In this
case, the constraint described in Equation (30) for avoiding
data loss can be simplified to Equation (33), given the fact
that lmmg ≥ 0, and for any task τi, Jmτi ≥ 0 and JMτi = rτi .

Tτr + rτr < Tτw − rτw − lMmg (33)

The communication between processors are through shared
variables, therefore lMmg = 0. The response time rτw and
rτr are randomized but smaller than 0.05 second. When we
set the periods of sensing tasks, LQR, PIDs and actuating
tasks to be 1, 0.5, 0.2, 0.1 second respectively, constraint
(33) and (32) hold, and the simulation result of the mapped
model is the same as the functional specification. When we
gradually reduce all the periods by the same factor, con-
straint (33) does not always hold, and the simulation results
of the two models become different as shown in Table 4.
The difference is acceptable though for temperature con-
trol system. This shows that for some applications, stream
equivalence can be relaxed.
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Table 4. Comparison of mapped and syn-
chronous models

Sensing Period (s) 1.0 0.5 0.2 0.1
Avg. Differences of 0 2.28 6.83 8.14
Temperature (oC) ×10−4 ×10−4 ×10−4

6 Conclusions

We proposed a correct-by-construction design flow for
automatic deployment of building automation and control
systems on distributed platforms that leverages vendor tool
chains for code generation. This approach differs signifi-
cantly from the ad-hoc flow used today where control con-
tractors interpret standard sequences of operations and code
them directly in a low level language.

In the future, we plan to include more general ERMs and
EMs in a library of schedulers to cover a larger set of input
specifications. Further, we plan to improve the MILP for-
mulation in the mapping step by including the estimation
of communication costs. We also plan to study semantic
preservation with fault tolerance.
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